2,910 research outputs found

    Visible-Light Switching of Metallosupramolecular Assemblies**

    Full text link
    A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3L6]6+ and a distorted tetrahedron [Pd4L8]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light

    Hund's rule and metallic ferromagnetism

    Full text link
    We study tight-binding models of itinerant electrons in two different bands, with effective on-site interactions expressing Coulomb repulsion and Hund's rule. We prove that, for sufficiently large on-site exchange anisotropy, all ground states show metallic ferromagnetism: They exhibit a macroscopic magnetization, a macroscopic fraction of the electrons is spatially delocalized, and there is no energy gap for kinetic excitations.Comment: 17 page

    Varicella-Zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line

    Get PDF
    Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells

    Exploring attention in vr:Effects of visual and auditory modalities

    Get PDF
    Attention requires the ability to stay concentrated and alert to stimuli over prolonged periods of time. Virtual reality (VR) can be used in various training situations where attention plays a major role (e.g. system operators). Here, we investigate the effects of visual and auditory stimuli on attention performance in a VR aquarium (Nesplora Aquarium). Participants pay attention to the main fish tank and respond by pressing a button. The stimuli are different species of fish that are delivered either via visual or auditory channels. Thirty-seven participants completed the VR test and paper questionnaires. We found that attention is influenced differently by sensory modalities. Attention performance measured by the reaction time to correct targets and the number of errors of omission were better in the visual condition, while the number of errors of commission were lower in the auditory condition. The human factors’ role in attention tasks is also discussed.</p

    The Law and Policy of Child Maltreatment

    Get PDF
    Each year in the United States some four million children are reported to child protective services and hundreds of thousands of children are confirmed victims of maltreatment. This chapter provides a brief overview of the civil and criminal law’s response to child abuse and neglect. It summarizes the major federal statutes that provide funding to the states to support both civil and criminal law responses to maltreatment. It discusses the division of responsible for responding to child maltreatment between the federal and state governments (federalism). It also provides a summary of the constitutional framework for handling both civil and criminal child maltreatment cases

    Electrical detection of 31P spin quantum states

    Get PDF
    In recent years, a variety of solid-state qubits has been realized, including quantum dots, superconducting tunnel junctions and point defects. Due to its potential compatibility with existing microelectronics, the proposal by Kane based on phosphorus donors in Si has also been pursued intensively. A key issue of this concept is the readout of the P quantum state. While electrical measurements of magnetic resonance have been performed on single spins, the statistical nature of these experiments based on random telegraph noise measurements has impeded the readout of single spin states. In this letter, we demonstrate the measurement of the spin state of P donor electrons in silicon and the observation of Rabi flops by purely electric means, accomplished by coherent manipulation of spin-dependent charge carrier recombination between the P donor and paramagnetic localized states at the Si/SiO2 interface via pulsed electrically detected magnetic resonance. The electron spin information is shown to be coupled through the hyperfine interaction with the P nucleus, which demonstrates the feasibility of a recombination-based readout of nuclear spins

    Testing in the incremental design and development of complex products

    Get PDF
    Testing is an important aspect of design and development which consumes significant time and resource in many companies. However, it has received less research attention than many other activities in product development, and especially, very few publications report empirical studies of engineering testing. Such studies are needed to establish the importance of testing and inform the development of pragmatic support methods. This paper combines insights from literature study with findings from three empirical studies of testing. The case studies concern incrementally developed complex products in the automotive domain. A description of testing practice as observed in these studies is provided, confirming that testing activities are used for multiple purposes depending on the context, and are intertwined with design from start to finish of the development process, not done after it as many models depict. Descriptive process models are developed to indicate some of the key insights, and opportunities for further research are suggested

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure

    Operator theory and function theory in Drury-Arveson space and its quotients

    Full text link
    The Drury-Arveson space Hd2H^2_d, also known as symmetric Fock space or the dd-shift space, is a Hilbert function space that has a natural dd-tuple of operators acting on it, which gives it the structure of a Hilbert module. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page

    Predicted Auxiliary Navigation Mechanism of Peritrichously Flagellated Chemotactic Bacteria

    Get PDF
    Chemotactic movement of Escherichia coli is one of the most thoroughly studied paradigms of simple behavior. Due to significant competitive advantage conferred by chemotaxis and to high evolution rates in bacteria, the chemotaxis system is expected to be strongly optimized. Bacteria follow gradients by performing temporal comparisons of chemoeffector concentrations along their runs, a strategy which is most efficient given their size and swimming speed. Concentration differences are detected by a sensory system and transmitted to modulate rotation of flagellar motors, decreasing the probability of a tumble and reorientation if the perceived concentration change during a run is positive. Such regulation of tumble probability is of itself sufficient to explain chemotactic drift of a population up the gradient, and is commonly assumed to be the only navigation mechanism of chemotactic E. coli. Here we use computer simulations to predict existence of an additional mechanism of gradient navigation in E. coli. Based on the experimentally observed dependence of cell tumbling angle on the number of switching motors, we suggest that not only the tumbling probability but also the degree of reorientation during a tumble depend on the swimming direction along the gradient. Although the difference in mean tumbling angles up and down the gradient predicted by our model is small, it results in a dramatic enhancement of the cellular drift velocity along the gradient. We thus demonstrate a new level of optimization in E. coli chemotaxis, which arises from the switching of several flagellar motors and a resulting fine tuning of tumbling angle. Similar strategy is likely to be used by other peritrichously flagellated bacteria, and indicates yet another level of evolutionary development of bacterial chemotaxis
    • …
    corecore