38 research outputs found

    The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia

    Get PDF
    The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4αPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4αPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult

    Proton-gated Ca(2+)-permeable TRP channels damage myelin in conditions mimicking ischaemia

    Get PDF
    The myelin sheaths wrapped around axons by oligodendrocytes are crucial for brain function. In ischaemia myelin is damaged in a Ca(2+)-dependent manner, abolishing action potential propagation. This has been attributed to glutamate release activating Ca(2+)-permeable N-methyl-d-aspartate (NMDA) receptors. Surprisingly, we now show that NMDA does not raise the intracellular Ca(2+) concentration ([Ca(2+)]i) in mature oligodendrocytes and that, although ischaemia evokes a glutamate-triggered membrane current, this is generated by a rise of extracellular [K(+)] and decrease of membrane K(+) conductance. Nevertheless, ischaemia raises oligodendrocyte [Ca(2+)]i, [Mg(2+)]i and [H(+)]i, and buffering intracellular pH reduces the [Ca(2+)]i and [Mg(2+)]i increases, showing that these are evoked by the rise of [H(+)]i. The H(+)-gated [Ca(2+)]i elevation is mediated by channels with characteristics of TRPA1, being inhibited by ruthenium red, isopentenyl pyrophosphate, HC-030031, A967079 or TRPA1 knockout. TRPA1 block reduces myelin damage in ischaemia. These data suggest that TRPA1-containing ion channels could be a therapeutic target in white matter ischaemia

    What Is Known About Vertex Cover Kernelization?

    No full text
    25 pages, 10 figures. Appeared in volume 11011 of LNCS, pages 330-356, see Reference [29] in the text. Compared to [29], this arXiv-upload contains a fixed version of Reduction R.8, the order of presentation of Reductions R.6 and R.7 has been switched, and a few observations have been added in Section 3International audienceWe are pleased to dedicate this survey on kernelization of the Vertex Cover problem, to Professor Juraj Hromkovi\v{c} on the occasion of his 60th birthday. The Vertex Cover problem is often referred to as the Drosophila of parameterized complexity. It enjoys a long history. New and worthy perspectives will always be demonstrated first with concrete results here. This survey discusses several research directions in Vertex Cover kernelization. The Barrier Degree of Vertex Cover kernelization is discussed. We have reduction rules that kernelize vertices of small degree, including in this paper new results that reduce graphs almost to minimum degree five. Can this process go on forever? What is the minimum vertex-degree barrier for polynomial-time kernelization? Assuming the Exponential-Time Hypothesis, there is a minimum degree barrier. The idea of automated kernelization is discussed. We here report the first experimental results of an AI-guided branching algorithm for Vertex Cover whose logic seems amenable for application in finding reduction rules to kernelize small-degree vertices. The survey highlights a central open problem in parameterized complexity. Happy Birthday, Juraj
    corecore