1,532 research outputs found

    Efficient Mixing at low Reynolds numbers using polymer additives

    Full text link
    Mixing in fluids is a rapidly developing field of fluid mechanics \cite{Sreen,Shr,War}, being an important industrial and environmental problem. The mixing of liquids at low Reynolds numbers is usually quite weak in simple flows, and it requires special devices to be efficient. Recently, the problem of mixing was solved analytically for a simple case of random flow, known as the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Here we demonstrate experimentally that very viscous liquids at low Reynolds number, ReRe. Here we show that very viscous liquids containing a small amount of high molecular weight polymers can be mixed quite efficiently at very low Reynolds numbers, for a simple flow in a curved channel. A polymer concentration of only 0.001% suffices. The presence of the polymers leads to an elastic instability \cite{LMS} and to irregular flow \cite{Ours}, with velocity spectra corresponding to the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Our detailed observations of the mixing in this regime enable us to confirm sevearl important theoretical predictions: the probability distributions of the concentration exhibit exponential tails \cite{Fal,Fouxon}, moments of the distribution decay exponentially along the flow \cite{Fouxon}, and the spatial correlation function of concentration decays logarithmically.Comment: 11 pages, 5 figure

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    Effect of childbirth on the course of Crohn's disease; results from a retrospective cohort study in the Netherlands

    Get PDF
    Contains fulltext : 95846.pdf (publisher's version ) (Open Access)BACKGROUND: Pregnant women with Crohn's disease needs proper counselling about the effect of pregnancy and childbirth on their disease. However, Literature about the effect of childbirth on Crohn's disease is limited. This study examined the effect of childbirth on the course of Crohn's disease and especially perianal Crohn's disease. METHODS: This is a retrospective cohort study which was performed in a tertiary level referral hospital in the Netherlands. From the IBD database, female patients aged 18-80 years in 2004 were selected. Data analysis took place in the years 2005 and 2006. Eventually, 114 women with at least one pregnancy after the diagnosis of Crohn's disease were eligible for the study. Differences between groups were analyzed using Wilcoxon Mann Whitney tests and Chi-square analysis with 2 x 2 or 2 x 3 contingency tables. Two-tailed values were used and p values < 0.05 were considered statistically significant. RESULTS: 21/114 women (18%) had active luminal disease prior to pregnancy, with significantly more pregnancy related complications compared to women with inactive luminal disease (Odds ratio 2.8; 95% CI 1.0 - 7.4). Caesarean section rate was relatively high (37/114, 32%), especially in patients with perianal disease prior to pregnancy compared to women without perianal disease (Odds ratio 4.6; 95% CI 1.8 - 11.4). Disease progression after childbirth was more frequent in patients with active luminal disease prior to pregnancy compared to inactive luminal disease (Odds ratio 9.7; 95% CI 2.1 - 44.3). Progression of perianal disease seems less frequent after vaginal delivery compared with caesarean section, in both women with prior perianal disease (18% vs. 31%, NS) and without prior perianal disease (5% vs 14%, NS). There were no more fistula-related complications after childbirth in women with an episiotomy or second degree tear. CONCLUSION: A relatively high rate of caesarean sections was observed in women with Crohn's disease, especially in women with perianal disease prior to pregnancy. A protective effect of caesarean section on progression of perianal disease was not observed. However, this must be interpreted carefully due to confounder effect by indication for caesarean section

    Divergent Roles of Salmonella Pathogenicity Island 2 and Metabolic Traits during Interaction of S. enterica Serovar Typhimurium with Host Cells

    Get PDF
    The molecular mechanisms of virulence of the gastrointestinal pathogen Salmonella enterica are commonly studied using cell culture models of infection. In this work, we performed a direct comparison of the interaction of S. enterica serovar Typhimurium (S. Typhimurium) with the non-polarized epithelial cell line HeLa, the polarized cell lines CaCo2, T84 and MDCK, and macrophage-like RAW264.7 cells. The ability of S. Typhimurium wild-type and previously characterized auxotrophic mutant strains to enter host cells, survive and proliferate within mammalian cells and deploy the Salmonella Pathogenicity Island 2-encoded type III secretion system (SPI2-T3SS) was quantified. We found that the entry of S. Typhimurium into polarized cells was much more efficient than entry into non-polarized cells or phagocytic uptake. While SPI2-T3SS dependent intracellular proliferation was observed in HeLa and RAW cells, the intracellular replication in polarized cells was highly restricted and not affected by defective SPI2-T3SS. The contribution of aromatic amino acid metabolism and purine biosynthesis to intracellular proliferation was distinct in the various cell lines investigated. These observations indicate that the virulence phenotypes of S. Typhimurium are significantly affected by the cell culture model applied

    Surface properties of glass micropipettes and their effect on biological studies

    Get PDF
    In this paper, an investigation on surface properties of glass micropipettes and their effect on biological applications is reported. Pipettes were pulled under different pulling conditions and the effect of each pulling parameter was analyzed. SEM stereoscopic technique was used to reveal the surface roughness properties of pipette tip and pipette inner wall in 3D. More than 20 pipettes were reconstructed. Pipette heads were split open using focused ion beam (FIB) milling for access to the inner walls. It is found that surface roughness parameters are strongly related on the tip size. Bigger pipettes have higher average surface roughness and lower developed interfacial area ratio. Furthermore, the autocorrelation of roughness model of the inner surface shows that the inner surface does not have any tendency of orientation and is not affected by pulling direction. To investigate the effect of surface roughness properties on biological applications, patch-clamping tests were carried out by conventional and FIB-polished pipettes. The results of the experiments show that polished pipettes make significantly better seals. The results of this work are of important reference value for achieving pipettes with desired surface properties and can be used to explain biological phenomenon such as giga-seal formation

    A Duplication CNV That Conveys Traits Reciprocal to Metabolic Syndrome and Protects against Diet-Induced Obesity in Mice and Men

    Get PDF
    The functional contribution of CNV to human biology and disease pathophysiology has undergone limited exploration. Recent observations in humans indicate a tentative link between CNV and weight regulation. Smith-Magenis syndrome (SMS), manifesting obesity and hypercholesterolemia, results from a deletion CNV at 17p11.2, but is sometimes due to haploinsufficiency of a single gene, RAI1. The reciprocal duplication in 17p11.2 causes Potocki-Lupski syndrome (PTLS). We previously constructed mouse strains with a deletion, Df(11)17, or duplication, Dp(11)17, of the mouse genomic interval syntenic to the SMS/PTLS region. We demonstrate that Dp(11)17 is obesity-opposing; it conveys a highly penetrant, strain-independent phenotype of reduced weight, leaner body composition, lower TC/LDL, and increased insulin sensitivity that is not due to alteration in food intake or activity level. When fed with a high-fat diet, Dp(11)17/+ mice display much less weight gain and metabolic change than WT mice, demonstrating that the Dp(11)17 CNV protects against metabolic syndrome. Reciprocally, Df(11)17/+ mice with the deletion CNV have increased weight, higher fat content, decreased HDL, and reduced insulin sensitivity, manifesting a bona fide metabolic syndrome. These observations in the deficiency animal model are supported by human data from 76 SMS subjects. Further, studies on knockout/transgenic mice showed that the metabolic consequences of Dp(11)17 and Df(11)17 CNVs are not only due to dosage alterations of Rai1, the predominant dosage-sensitive gene for SMS and likely also PTLS. Our experiments in chromosome-engineered mouse CNV models for human genomic disorders demonstrate that a CNV can be causative for weight/metabolic phenotypes. Furthermore, we explored the biology underlying the contribution of CNV to the physiology of weight control and energy metabolism. The high penetrance, strain independence, and resistance to dietary influences associated with the CNVs in this study are features distinct from most SNP–associated metabolic traits and further highlight the potential importance of CNV in the etiology of both obesity and MetS as well as in the protection from these traits

    A Realistic Radiative Fermion Mass Hierarchy in Non-supersymmetric SO(10)

    Full text link
    A non-supersymmetric grand unified theory can exhibit a "radiative fermion mass hierarchy", in which the heavier quarks and leptons get mass at tree level and the lighter ones get mass from loop diagrams. Recently the first predictive model of this type was proposed. Here it is analyzed numerically and it is shown to give an excellent fit to the quark and lepton masses and mixings, including the CP phase violating phase δCKM\delta_{CKM}. A relation between the neutrino angle θ13\theta_{13} and the atmospheric neutrino angle is obtainedComment: 13 pages, 4 figures, RevTeX

    Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa

    Get PDF
    Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation, maintains vital ecosystems, and strongly influences terrestrial water and energy budgets. Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained. Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies
    • …
    corecore