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Summary Paragraph 

Groundwater in Africa supports livelihoods and poverty alleviation1,2, maintains vital 

ecosystems, and strongly influences terrestrial water and energy budgets3. However, 

hydrological processes governing groundwater recharge that sustains this resource, and their 

sensitivity to climatic variability are poorly constrained4,5. Here we show, through analysis of 

multi-decadal groundwater hydrographs across sub-Saharan Africa, how aridity controls the 

predominant recharge processes whereas local hydrogeology influences the type and sensitivity 

of precipitation-recharge relationships. Recharge in some humid locations varies by as little as 

5% (CoV) across a wide range in annual precipitation values whereas others show 

approximately linear precipitation-recharge relationships with precipitation thresholds 

(⪅10 mm/d) governing the initiation of recharge. These thresholds tend to rise as aridity 

increases, and recharge in drylands is more episodic and increasingly dominated by focussed 

recharge via losses from ephemeral overland flows. Extreme annual recharge is commonly 

associated with intense rainfall and flooding events, themselves often driven by large-scale 

climate controls. Intense precipitation, even during lower precipitation years, produces some 

of the largest years of recharge in some dry subtropical locations. This challenges the ‘high 

certainty’ consensus that drying climatic trends will decrease water resources in such regions4. 

The potential resilience of groundwater in many areas revealed by improved understanding of 

precipitation-recharge relationships is critical for informing reliable climate change impact 

projections and adaptation strategies.  
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Main Text 

Groundwater is a fundamental component of the global hydro-climatic system3,5 and plays a 

central role in sustaining water supplies and livelihoods in sub-Saharan Africa due to its 

widespread availability6, generally high quality, and intrinsic ability to buffer7 the impacts of 

episodic drought and pronounced climate variability that characterizes this region1. 

Groundwater in sub-Saharan Africa is poised to enable increased freshwater withdrawals as 

demand rises8 and climate change increases variability in surface water resources. It is therefore 

critical to understand the renewability of groundwater under current and future climate. 

Groundwater levels and fluxes are governed by a dynamic interplay between recharge 

(replenishment of groundwater) and discharge (loss of groundwater to streams, lakes, oceans 

or atmosphere) with a variety of controls and feedbacks from climate, soils, geology, landcover 

and human abstraction9. It is notoriously difficult10 to determine variations in recharge 

magnitudes over time and space and their relationship to climate as direct, long-term 

observations of groundwater levels to inform such understanding in this region are sparse11. 

Regional water security assessments have therefore relied heavily on large-scale hydrological 

models to derive estimates of potential groundwater resources across the continent8 but these 

remain unvalidated by groundwater observations5,12. A robust, data-driven understanding of 

groundwater recharge, and critically its dependence on climate, is fundamentally required to 

inform water resource decision-making. Improved understanding of groundwater-climate 

sensitivity is also integral to understanding important hydro-climate-ecological-human 

interactions across the region, both in the present day13 and the deeper past14. 

 

We address this challenge here by exploring precipitation-recharge (P-R) relationships across 

a diverse range of climatic and geological contexts in sub-Saharan Africa, using a unique 

archive of multi-decadal, groundwater level hydrographs (time series). By applying a 
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consistent methodology across the archive we are able to characterize the climate-groundwater 

relations observed into indicative types which each lead to implications for understanding 

climate change impacts on groundwater systems and sustainable water management. 

 

We contend that long term (i.e. decadal or longer) groundwater level hydrographs, with little 

or known interference from human activities, offer the most direct way of assessing variations 

in groundwater storage and, via inversion using a water table fluctuation (WTF) technique (see 

Methods), assessing temporal sensitivity of groundwater recharge to climate variability. We 

have, therefore, collated new unpublished records and updated previously published records to 

evaluate recharge and relationships with climate using a WTF methodology. The 14 multi-

decadal hydrographs and accompanying precipitation records collated from nine countries in 

Sub-Saharan Africa cover a wide range of climate zones from hyper-arid to humid, including 

both the unimodal precipitation regimes (local summer wet season) of the northern and 

southern hemisphere subtropics and bimodal Equatorial regime, as well as a diverse range of 

geological and landscape settings (Figure 1, Extended Data Table 1). 

 

Most of the groundwater hydrographs show seasonal groundwater-level rises of varying 

magnitude that indicate recharge in excess of net groundwater drainage at some point during 

most years on record. The exceptions are Tanzania, Namibia and South Africa (Modderfontein) 

where multi-year continuous groundwater-level declines are observed, punctuated by episodic 

recharge events (Figure 1). Long term rising trends observed in the Niger hydrographs reflect 

increases in recharge rates since clearance of native vegetation in the 1960s15 which have not 

yet equilibrated with rates of net groundwater drainage due to long groundwater response 

times9 in the area. The absence of long term trends in other areas indicates a relatively stable 

balance between long term (i.e. multi-decadal) rates of groundwater recharge and discharge. 
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Groundwater recharge is often described on a continuum between ‘focussed’ (or ‘indirect’) 

recharge taking place via leakage of ephemeral streams or ponds, to ‘diffuse’ (or ‘direct’) 

recharge occurring in a more evenly distributed manner via the direct infiltration of 

precipitation at the land surface17,18. The predominance of focussed recharge is thought to 

increase with aridity19 although there is no established threshold for when this occurs and 

diffuse recharge can also be significant in some semi-arid areas20. As part of conceptual models 

derived for each site, we developed a process-based understanding of recharge, resolving 

specifically whether diffuse or focussed recharge is dominant. This was assessed for each 

location based on additional reports, data, local knowledge and analysis of the form of the 

groundwater hydrographs themselves (see Methods, Supplementary Information). We found 

that the transition from focussed-dominated to diffuse-dominated recharge occurs around the 

boundary between semi-arid and sub-humid conditions (as defined by the Aridity Index which 

is the ratio of long term precipitation to potential evapotranspiration, P/PET, Extended Data 

Table 1). 

 

We have classified hydrographs according to their sensitivity of annual recharge to 

precipitation as reflected in the annual precipitation-recharge cross plots (herein ‘P-R plots’, 

Figure 2) and an analysis of how the proportion of recharge accumulates when years are ranked 

by annual precipitation (herein ‘rP-cR plots’, Figure 3, Extended Data Figure 3). We then used 

a suite of idealised forward recharge modeling experiments to investigate how observed 

precipitation-recharge relationships relate to the magnitude of precipitation thresholds required 

to initiate recharge (see Methods and Extended Data Figure 3). We observe three distinct types 

of precipitation-recharge sensitivity based on the empirical relationships derived from the data 

as follows (see Methods for site by site details): 
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(1) Consistent recharge rates from year to year across the range of annual precipitation 

(purple in Figures 2 to 4). This regime, exemplified by Natitingou (Benin) and Soroti (Uganda) 

shows little variation in annual recharge across a wide range of precipitation on P-R plots 

(Figure 2) and lies close to the 1:1 line in rP-cR plots (Figure 3). This type of precipitation–

recharge response is observed in sub-humid to humid locations and reflects the impact of local 

geology and soils in governing diffuse recharge processes. 

(2) Increasing annual recharge with annual precipitation above a threshold (green in 

Figures 2 to 4). This type of regime shows positive P-R correlations (Figure 2) and shifts in the 

rP-cR relationship increasingly deviating to the left of the 1:1 line (Figure 3). This type is found 

at a majority of sites (n=9), across a wide range of aridity from humid to semi-arid conditions, 

and in areas dominated by both diffuse or focussed recharge. Sites with the largest apparent 

precipitation thresholds for recharge are located in semi-arid regions (Tanzania, Zimbabwe and 

South Africa-Sterkloop).  

(3) Complex relationships between annual precipitation and recharge amount (orange in 

Figures 2 to 4). This type shows greater scatter on the P-R plots (Figure 2) and large ‘steps’ in 

rP-cR plots (Figure 3) as shown by Swartbank and Rooibank (Namibia) and Modderfontein 

(South Africa). A key feature of the annual P-R relationship is that some of the largest recharge 

can occur during relatively low total precipitation years as a consequence of intense 

precipitation occurring over a range of timescales dependent on the local conditions. This type 

is found in semi-arid to hyper-arid locations dominated by focussed recharge. 

 

Key insights regarding the relationships among aridity, recharge frequency, dominant recharge 

process and rP-cR relationships across the records are synthesized in Figure 4. This indicates 

the complex reality of controls on groundwater recharge and a lack of one to one 

correspondence with any individual factor. For example, while there is some relationship 
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between the rP-cR relationships and degree of aridity (Figure 3 and Extended Data 

Figure 2d,e), variation in local conditions (principally in soils/geology and precipitation 

intensity) results in distinctive characteristics in each location’s recharge response to 

precipitation (see Methods). Hence, as aridity increases, while there are transitions from 

seasonal to episodic recharge frequency and from diffuse to focussed recharge, there is also a 

significant spread of rP-cR types across different climates. Whilst not informed directly by our 

data, we also recognize that groundwater in some currently hyper-arid regions was recharged 

when a wetter climatic regime prevailed in the past1 (referred to as having ‘Paleo’ recharge 

frequency in Fig 4). 

 

Where larger P thresholds for R are inferred, a smaller proportion of precipitation years yields 

the majority of long term recharge, and a majority of the variance in this relationship can be 

explained by increased aridity or coefficients of precipitation variability (Extended Data 

Figure 2d-g), where wetter years contribute disproportionally to recharge. Further, values of 

extreme annual recharge identified as Tukey outliers (see Methods) were only found in more 

arid locations (AI<0.5, Extended Data Table 1). By considering the wider regional precipitation 

distribution and the associated climate drivers during those years, we find that most years of 

substantial recharge are associated with widespread regional and seasonal scale precipitation 

anomalies, themselves associated with major known modes of global and/or regional climate 

variability (see Methods, Extended Data Table 2, Extended Data Figure 4). As such, substantial 

variability in groundwater recharge reflects the local impact of large-scale climate processes. 

 

The different precipitation-recharge sensitivities observed have clear implications for 

understanding potential changes to groundwater levels and fluxes under climate change and 

therefore for developing sustainable strategies for groundwater provision for water supply or 
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improving food security in sub-Saharan Africa. Type 1 relationships imply that climate change 

impacts on precipitation may have little impact on recharge (other factors being equal). 

However, decreased groundwater levels due to pumping in such environments could provide 

more ‘room’ for recharge to occur via capture21 of evapotranspiration (ET) or runoff. 

Increasing the distribution of groundwater monitoring in sub-Saharan Africa would help to 

identify Type 1 locations where groundwater abstraction can induce additional recharge. In 

these cases, and also for Type 2 sites with small P thresholds, sensitivity of recharge to changes 

in PET may also be low, because recharge is either not sensitive to P (Type 1) or factors other 

than P (Type 2) such as soil-moisture status. For Type 2 locations where thresholds are more 

highly influenced by antecedent dryness, recharge may be more sensitive to climate change 

impacts on both precipitation and PET, and land use change could also be important if soil 

structure is altered and impacts runoff and infiltration processes22. 

 

The episodic nature of recharge in more arid locations and the prevalence of large groundwater 

response times9 in such areas together indicate the importance of long timescale planning 

horizons. In this context, the observed dependence of recharge on large-scale patterns of 

climate variability within Types 2 and 3 suggests the potential for a degree of predictability 

with seasonal lead times. Further it suggests that future changes in variability are likely to be 

of greater importance than mean precipitation. There is therefore a need to understand potential 

changes to such climate processes in longer multi-decadal climate change projections, currently 

a major challenge for climate models23. 

 

In contrast to rather uncertain recharge projections, modelled projections of increased flood 

hazards are more consistent for tropical Africa4 and our results here show that focussed 

recharge is likely to be widespread during such events. Hence, an important climate change 
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adaptation strategy recommendation is for more widespread consideration of schemes to 

harness and enhance focussed recharge during flood flow, storing water in the subsurface via 

managed aquifer recharge24. Thus the increased flood risk under climate change may have a 

silver lining in this respect, water quality issues notwithstanding, and schemes to more 

effectively store flood water also have the potential to mitigate flood risk downstream. For 

Type 3, a key insight provided by our results in dry subtropical areas is that precipitation 

intensification, on the particular temporal and spatial scale determined by local conditions, may 

actually increase recharge, and thus available renewable water resources, despite an overall 

drying trend in annual precipitation totals25. 

 

Our data-driven results imply greater resilience to climate change than previously supposed in 

many locations from a groundwater perspective and thus question, for example, the model-

driven IPCC consensus that “Climate change is projected to reduce renewable surface water 

and groundwater resources significantly in most dry subtropical regions (robust evidence, high 

agreement)”4. More observation-driven research is needed to clarify this issue, and address the 

balance of change between groundwater and surface water resources. Our results also pose a 

challenge to the reliance on standard large scale model assessments for inferring climate-

groundwater dependencies until climate models can simulate with greater credibility both the 

large scale and local scale drivers of precipitation variability in the region, and hydrological 

models include the necessary recharge processes and the influence of geological variability. 

The establishment of greatly increased spatial coverage of long-term groundwater monitoring 

is needed to address the challenge of model validation in this context. 
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FIGURES 

 

Figure 1. Long term groundwater and precipitation records in the context of varying 

aridity across sub-Saharan Africa. a-m. Collated multi-decadal groundwater-level and 

precipitation time series showing a wide range of hydrograph responses, e.g. relatively 

consistent (a. Natitingou, Benin) or highly variable (d. Cococodji, Benin) annual fluctuations, 

highly episodic variations (j. Namibia, e. Tanzania), inter-decadal oscillations (f. 

Ouagadougou) or long term trends (b, c. Niger), reflect the complex interplay of climate, 

geology, soils and landcover represented across the monitoring locations. n. Axes definitions 

for panels a-m. o. The analysed Namibian rain gauge is indicated by a filled black square. 

Aridity index classes are defined by the CGIAR-CSI Global-Aridity and Global-PET 

Database16.  
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Figure 2. Observed relationships between precipitation and groundwater recharge on an 

annual (hydrological years) basis (P-R plots). a-i. Error bars represent the total range of 

uncertainty due to the choice of recession parameters within the WTF method. A best estimate 

of specific yield was used to estimate groundwater recharge values. Percentage errors in 

recharge due to uncertainty in specific yield as stated on the y-axis will result in a linear 

rescaling of values along that axis, but not alter the form of the relationships. Dashed boxes 

outline Tukey outlier values of extreme recharge. Long term average recharge values are given 

in Extended Data Table 1. Note variable axis ranges. Sites are colour coded to represent the 
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precipitation-recharge relationship types defined in Figure 3 & 4 (i.e. Type 1=purple, Type 

2=greens, Type 3=orange). 

 

Figure 3. Cumulative contribution of annual recharge (by hydrological year) to total 

recharge for ranked annual precipitation (largest to smallest) (rP-cR plots). Values on 

both axes have been normalized by the total number of years in the record to provide fractional 

contributions for comparative purposes. Categorisation as either predominantly diffuse or 

focussed recharge is made on the basis of derived site conceptual models described in 

Supplementary Information. Site colour coding is consistent with Figures 2 & 4 (i.e. Type 

1=purple, Type 2=greens, Type 3=orange). 
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Figure 4. Synthesis of controls on recharge variations and processes in time and space in 

sub-Saharan Africa. As aridity increases, groundwater recharge tends to become increasingly 

heterogeneous in both space and time. Where recharge occurs via focussed pathways, recharge 

may become ‘increasingly indirect’ as aridity increases meaning that the distance between the 

location of rainfall and the location of recharge increases. Colours for the observed rP-cR 

sensitivity types correspond to those in Figures 2 to 3 (i.e. Type 1=purple, Type 2=greens, 

Type 3=orange). Paleo-recharge refers to recharge that occurred in some currently hyper-arid 

regions when a wetter climatic regime prevailed1.  
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Methods 

Groundwater hydrograph and precipitation data collation and processing 

Multi-decadal time series of groundwater levels and precipitation were compiled by the authors 

from records of observation wells initiated and maintained by government departments and 

research institutions in nine countries in sub-Saharan Africa (Extended Data Table 1, Figure 1). 

The pan-African collation of these hydrographs was initiated at the 41st Congress of the 

International Association of Hydrogeologists (IAH) in Marrakech (Morocco) on 14th 

September 2014. All records were subjected to a rigorous review by the authors during which 

the integrity, continuity, duration and interpretability of records were evaluated. This process 

included dedicated workshops in Benin, Tanzania, and Uganda, and records failing these tests 

were discarded from the analysis. Procedures included taking of the first time derivative to 

identify anomalous spikes in records commonly associated with errors of data-entry. Where 

multiple records in same geographic and climate zone were available (e.g. Benin, South Africa) 

we prioritized records remote from potential areas of intensive abstraction. Statistical clustering 

of records was also used in the Limpopo Basin of South Africa to identify the representativity 

of employed records at Modderfontein and Sterkloop. Hierarchical clustering was done on 

hydrographs converted into a Standard Groundwater Index26 and identified three clusters 

through a kmeans approach, one of which was an intermediary type hydrograph between two 

end members represented by Modderfontein and Sterkloop. 

 

Recognising that the substantial spatial variability of precipitation in sub-Saharan Africa may 

impact observed relationships between precipitation and recharge, we used precipitation 

records which are representative of the recharge generation process (i.e. diffuse or focussed). 

As a result, rain gauges are either co-located (e.g. < 5 m away) with groundwater monitoring 

sites or we employed the most proximate rain gauge typically less than 10 km away 
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(Supplementary Information).  In the case of the Namibian data, the relevant rain gauge was 

based more than 200 km away from the groundwater monitoring locations to be representative 

of the runoff generation area in the River Kuiseb, which acts as the source for focussed recharge 

in these locations. 

 

Each groundwater record thus has an accompanying daily (9 of the 14 records) or monthly (5 

of the 14 records) precipitation record covering the same period. Infilling of occasional gaps 

of less than a week in daily groundwater-level records was achieved by linear interpolation. 

All locations show seasonal, mostly unimodal, precipitation (P) distributions with the 

exception of those in Uganda, southern Benin (Natitingou) and Ghana with a more complex 

bimodal pattern (Extended Data Figure 1). 

 

Relationships between average climatic variables, large scale climate processes and 

recharge 

Coefficients of monthly (or annual) precipitation variability were calculated as the standard 

deviation of monthly (or annual) precipitation of the whole record divided by the mean 

precipitation of the whole record multiplied by 100%. For analysis of wider climatic anomalies 

during major recharge events we use gridded data of: Global Precipitation Climatology Centre 

(GPCC) monthly precipitation product v8 27 at 1.0° resolution; Daily precipitation at 0.1° 

resolution from the Climate Hazards InfraRed Precipitation with Station Data28; The Extended 

Reconstructed Sea Surface Temperature (ERSST) version 4 data from the National 

Oceanographic and Atmospheric Administration (NOAA)29 on a monthly 2° grid. 

 

Linear regression analysis indicates a strong correlation (R2=0.90) between P and aridity index 

(P/PET) (Extended Data Figure 2a) since rates of potential evapotranspiration (PET) have a 
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relatively small range across these tropical latitudes in comparison to annual average rainfall. 

PET neither correlates with P (R2=0.00) or P/PET (R2=0.00). Aridity index is strongly 

correlated to the coefficient of monthly P variability (R2=0.77), but less so with the coefficient 

of annual P variability (R2=0.38) (Extended Data Figure 2b,c) together indicating that aridity 

is a strong control on the degree of rainfall seasonality. 

 

Long-term average recharge rates correlate poorly with rainfall or aridity (Extended Data 

Figure 2h). In humid regions this is expected due to geological variations causing large 

differences in absolute recharge rates; in Benin for example, Cococodji recharge is nearly an 

order of magnitude greater than that in Natitingou despite similar rainfall and aridity (Figure 2). 

In more arid regions, increasing spatial heterogeneity in recharge rates is expected due to the 

increasing predominance in focussed recharge (Figure 4). Thus, the Namibian records, for 

example, show high rates of recharge reflective of the ‘footprint’ of the observation well 

located near an ephemeral stream; such values which are often higher than the local 

precipitation, would nevertheless be expected to be larger than average recharge rates for the 

wider hyper-arid region. Thus, the direct comparison of recharge rates between sites could be 

misleading without considering these potentially confounding factors. 

 

We show that most of the extreme recharge events, which are identified as recharge outliers 

(Figure 2), are associated with relatively widespread regional and seasonal scale precipitation 

anomalies (see exemplar in Extended Data Figure 4). These precipitation anomalies themselves 

can be associated with large-scale structures of climate variability known to impact the 

different regions of Africa (Extended Data Table 2). Whilst recognising that observed 

precipitation variability typically results from a complex set of drivers occurring 

simultaneously over various spatial and temporal scales, we note the following association of 
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large-scale precipitation anomalies during the outlier extreme local recharge years and climate 

drivers. 

 

Across our sites south of the equator we note that the major recharge years are associated with: 

El Niño events concurrent with the positive phase of the Indian Ocean Zonal Mode (IOZM30) 

in the East Africa (Tanzania) site, and La Niña events in Southern Africa (South Africa and 

Zimbabwe, see Extended Data Figure 3 as an example). This is consistent with the well-

established north-south dipole precipitation response to El Niño-Southern Oscillation (ENSO) 

events which typically, but neither exclusively nor consistently, bring wet (dry) rainfall 

anomalies across East (Southern) Africa during El Niño events and the reverse during La 

Niña31,32. 

 

Further west in the hyper-arid Namibia sites the drivers of the outlier recharge events are more 

complex, as expected given the complex ‘Type 3’ relationship of precipitation to the highly 

episodic recharge (Figure 2), dependent on triggering of ephemeral surface river flow. Of the 

five outlier recharge events, two can be linked to regional/seasonal scale rainfall anomalies 

associated with an anomalous warming of the cold Benguela current off the west coast of 

Africa. Such ‘Benguela Niño’ events33 are known to trigger convection and rainfall across 

much of Northern Namibia and Southern Angola34,35. The remaining three events appear linked 

to spatially extensive but shorter duration heavy rainfall anomalies from sub-seasonal 

variability. These include the notable, anomalous westward propagation of tropical cyclone 

Eline in February 2000 from the Indian Ocean basin to Namibia, which also caused widespread 

precipitation extremes across much of South-eastern Africa compounding existing La Niña 

related rainfall, as well as synoptic scale tropical low pressure systems in 2009. 
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The West African sites show a smaller number of outlier recharge events. The 2012 event at 

Burkina Faso appears part of wider, regional and seasonal scale precipitation anomalies, in 

which the Sahel region as a whole experienced the strongest monsoon season since 1953, likely 

resulting from the combination of seasonal tropical Atlantic temperature anomalies36 and sub-

seasonal variability from active phases of the Madden Julian Oscillation37. The 1998 recharge 

event in Niger coincided with far less spatially coherent seasonal anomalies and likely resulted 

from intensive sub-seasonal precipitation events. 

 

Site conceptual models 

For each hydrograph location, a conceptual hydrogeological model was formulated based on 

available data, literature, and site visits by the authors, as necessary (Supplementary 

Information). These included an assessment of the main hydrogeological boundaries such as 

groundwater divides and perennial or ephemeral drainage features; the local context for factors 

which may influence recharge such as geology, soils, climate variables, groundwater 

abstraction and the thickness of the unsaturated zone; and estimations of aquifer storage and 

transmissivity. A particular focus was to develop an appreciation, based on the local context, 

of how ‘diffuse’ the recharge is likely to be spatially, or whether ‘focussed’ recharge is likely 

to be more significant in causing local variations in the magnitude of water table fluctuations. 

Of most importance for determining the predominance of diffuse versus focussed recharge is: 

the presence or absence of perennial versus ephemeral streams and ponds; co-incident timing 

of ephemeral or seasonal stream flows with water table responses; and the form of groundwater 

hydrographs with respect to the presence or absence of groundwater mounding as indicative of 

focussed recharge (see further details is the Section ‘Groundwater recessions’ below). The 

conceptual hydrogeological model development also enabled us to ensure that observed 

groundwater level changes are likely to be representative of water table fluctuations in an 
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unconfined aquifer (i.e. vertical flow in the aquifer is insignificant and that poro-elastic or other 

‘confined’ responses are negligible).  

 

Recharge estimation using water table fluctuation (WTF) method 

Approach and equations: inverse WTF models were used to infer the recharge timing and 

magnitude at the location of each hydrograph. The WTF technique is the most direct method 

of transient groundwater recharge estimation available and has very few embodied assumptions 

in comparison to other methods such as geochemical tracers or modelling approaches17,38. In a 

recent review of recharge estimation methods it was strongly recommended for application in 

humid and semi-arid African regions10 and it is also applicable for both diffuse39,40 and 

focussed41 recharge situations. 

We assume that groundwater level (or hydraulic head, h [L]) at an observation point is naturally 

controlled by the combined influence of the rate of net groundwater recharge (R [LT-1]), 

balanced by the rate of ‘net groundwater drainage’ (D [LT-1]) acting at that point in space and 

time. Further variations in WTF may be superimposed due to the rate of “net drawdown” (s 

[LT-1]) caused by changes in groundwater abstraction occurring at some distance from the 

observation point. 

 

The following water balance equation was used to approximate a time series (with time step 

∆t) of the ratio of recharge (Rt) to specific yield (Sy [-]): 

𝑅𝑡

𝑆𝑦
=

(ℎ𝑡−ℎ(𝑡−∆𝑡))

∆𝑡
+ 𝐺𝑊𝐿𝑟 + 𝑠𝑡  (1) 
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where GWLr (=
𝐷𝑡

𝑆𝑦
) is the rate of groundwater level recession42 [LT-1]. Absolute values of 

recharge were then also calculated by multiplying by the applicable specific yield at the 

position of the water table. 

 

To enable exact accounting periods for comparison with precipitation records, and between 

hydrographs, where observations were less frequent than daily, linear interpolation was used 

between groundwater level observations. Calculations were carried out on a daily time step and 

sums were calculated for accounting periods between one dry season and the next herein 

referred to as ‘hydrological years’. The same hydrological years were used for both R and P 

and are given for each site in Supplementary Information. If observations were missing across 

either end of the hydrological year in the first or last years of record, those years were removed 

from further analysis. Within the annual recharge time series generated “Tukey” outliers were 

identified as any years with values greater than 1.5 times the interquartile range above the third 

quartile. 

 

Groundwater recessions: the GWLr term was estimated based on the observed form and 

magnitude of the groundwater hydrograph during long dry periods by either setting a constant 

rate, or an exponential decay controlled by the following equation: 

𝐺𝑊𝐿𝑟 = (ℎ(𝑡−∆𝑡) − ℎ𝑏)𝐶   (2) 

Where hb is the elevation of the assumed lateral groundwater drainage boundary [L] and C is a 

decay constant [T-1]. 
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Most of the hydrographs have very distinctive seasonal precipitation patterns with long dry 

seasons during which the true form of groundwater recession (i.e. a groundwater level decline 

in the absence of any recharge) can be directly observed, assuming no human interferences42. 

This enables the choice of recession model (constant rate or exponential) to be confidently 

made, and constant rates or decay constants to be easily determined. This is in comparison to 

more humid parts of the world with limited dry periods where the WTF is harder to apply 

robustly39,40. For hydrographs in Ghana, South Africa (Modderfontein) and Burkina Faso, an 

exponential recession model was used due to the presence of a shallow water table, inferred 

high permeability fracture flow, and close proximity of the groundwater drainage boundary, 

respectively (see Supplementary Information). For Uganda (Soroti), the absence of long dry 

seasons, and the observed form of groundwater level declines did not make the choice between 

exponential and straight line recessions obvious, and so both were applied to represent the 

uncertainty. For all other locations, the observed variation of dry season groundwater-level 

recessions was used to define maximum and minimum constant rate end members to constrain 

the uncertainty in recharge estimates due to this parameter. This is consistent with theoretical 

expectations of linear recessions for these locations with drainage boundaries (where known) 

being sufficiently distant given the aquifer properties42. 

 

For the cases where focussed recharge is significant due to local infiltration from ephemeral 

streams and ponds, the expected theoretical form41 is for groundwater hydrographs to show 

steep recessions following a rise in the water table, then trend to a relatively constant lower 

‘background’ recession rate. This is observed for example in Zimbabwe, Tanzania, South 

Africa (Sterkloop), Niger and Namibia and is explained by localised groundwater ‘mounding’ 

near the location of focussed recharge dissipating on a much quicker timescale than the regional 

background recession, which operates on much longer spatial scales. In these cases, with the 
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exception of Namibia, the local mounding dissipates before the end of the hydrological year 

enabling a seasonal WTF accounting period to be used following the method of ref41. In 

Namibia, the recession of the recharge mounds occurred over timescales greater than a single 

season, and therefore had to be extrapolated leading to much greater uncertainty in the output 

recharge values (as evidenced by larger error bars in Figure 2). As discussed in ref41, the 

application of this method thus enables recharge rates to be derived which are representative 

of integrated processes across larger areas of the catchment or aquifer (whichever define the 

hydraulic boundaries), rather than simply reflecting the local conditions near the stream. 

However, the spatial representativity of recharge estimated at each location is variable and, as 

such, direct comparisons of absolute recharge rates (Extended Data Table 1) from site to site 

should only be made where this can be accounted for. 

 

Groundwater abstractions: once at steady state, groundwater abstractions should have no 

effect on water table fluctuations. However, transient abstractions cause time-varying 

drawdown at the groundwater monitoring location. If not accounted for, they will therefore 

cause recharge underestimations when drawdown is increasing, and overestimations when 

drawdowns are decreasing (e.g. if abstraction temporally reduces (increases) causing recovery 

(decline) in groundwater levels). In most cases, the observation wells are located far from the 

influence of major changes in groundwater abstraction as documented in the meta-data 

(Supplementary Information) and st was assumed to be zero. In one location (Makutapora, 

Tanzania), the monitoring wells are located within a major well-field where abstraction rates 

have been highly variable during the monitoring period. Corrections were therefore made for 

this site using a 3D groundwater model to estimate a time series of net drawdown to account 

for the changes in recession due to variations in pumping rate. (i.e. accounting for drawdown 
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due to increases in pumping, and recovery during decreases in pumping) (Supplementary 

Information). 

 

Specific yield: ranges of specific yield were estimated based on local information and literature 

for each groundwater level record as described in the Supplementary Information and assumed 

to be constant in time, and across the range of water table fluctuations at a given location. The 

uncertainty in specific yield can be considerable and represents the main uncertainty in the 

derived absolute values of recharge. As well as being notoriously hard to estimate43, it is also 

known that specific yield can vary in time due to vertical heterogeneity in lithology, due to 

shallow water tables or where swelling clays are present39,44. The variation in the chosen value 

for specific yield has no impact on the form of the relationship that recharge has with 

precipitation or the ranking of recharge events used in Figure 2 and 3 (and Extended Data 

Figure 3). However, we report the likely range of uncertainty in specific yield for each location 

(y-axes of Figure 2, Extended Data Table 1) as this does impact the absolute magnitude of the 

recharge estimates, and is one reason why inter-site comparisons of long term average recharge 

by this method can be problematic. 

 

Model experiments and interpretation of observed precipitation-recharge (rP-cR) 

relationships 

P-R cross plots (Figure 2) showing annual recharge against annual precipitation, allow an initial 

characterization of precipitation-recharge relationships to be developed. For comparative 

purposes across all records, we then normalized annual recharge by a cumulative sum as a 

fraction of the total recharge for all years in a given record, and plotted this against the 

fractional precipitation ranking for each record (rP-cR plots, Figure 3). To inform process-
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based inferences from these plots, we ran a suite of numerical recharge model experiments 

using models with different structures, for two chosen time series from contrasting climates in 

sub-Saharan Africa: Dodoma (semi-arid Tanzania) and Cococodji (humid Benin). The purpose 

was not to calibrate models for each of the locations across Africa but rather to understand the 

generic features of rP-cR plots for aiding interpretation of the relationships we observe in the 

data. 

 

Three model structures of increasing complexity were explored: (a) Recharge was assumed to 

be constant for precipitation events above a daily or annual threshold. Note that, since the 

values were normalized against the total recharge in all years, the actual recharge value is 

irrelevant to the result. (b) The second model structure, in the manner of ref45, assumes that a 

constant proportion of precipitation becomes recharge above a specified daily precipitation 

threshold. Thresholds were applied at a daily time step and then results aggregated for yearly 

comparisons. Since the values were normalized against the total recharge in all years, the 

chosen proportion of rainfall that becomes recharge is irrelevant to the result. (c) The third 

model was a dynamic single layer soil moisture balance model (SMBM), in the manner of 

refs46,47, also run at a daily time step and then aggregated to annual values. It was assumed in 

all SMBM model runs that the readily available water (RAW) was 50% of the total available 

water (TAW), that the crop coefficient was equal to 1 (e.g. for grass land cover), that the ratio 

of actual to potential evapotranspiration rates (AET/PET, a proxy for plant stress) decreased 

linearly from 1 to 0 as soil moisture deficit values increased from RAW to TAW, and that runoff 

was zero. 
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For Dodoma, daily PET values were derived using the Hargreaves and Samani equation48 from 

temperature data from the Dodoma Meteorological Station. In the case of missing data, the 

average value from the month is used or when, early in the record, entire months are without 

data the average temperature values for the corresponding month from the entire record was 

substituted. The calculated values were calibrated on pan evaporation data from the same 

location. For Cococodji, daily PET values derive from pan evaporation data collected from the 

meteorological station at the IITA (International Institute of Tropical Agriculture) office in 

Cotonou. 

 

The generic style of each type of rP-cR plot (Figure 3) is well captured by the models, for either 

of the two contrasting precipitation time series (Extended Data Figure 3); both show three 

distinct types of relationships and it is clear that different models (and thus processes) can lead 

to a similar sensitivity – i.e. a critical point is that each type of observed P-R sensitivity does 

not necessarily correspond to a particular recharge process. The first type (purple in Extended 

Data Figure 3) plots close to the 1:1 line indicating very consistent R values each year despite 

wide variations in P. The second type (green in Extended Data Figure 3) deviates from the 1:1 

line increasingly as the size of the potential thresholds in the SMBM (governed by TAW) or 

the actual thresholds in the linear models increase. The third type (orange in Extended Data 

Figure 3) shows pronounced steps in the curve generated by the largest thresholds in the linear 

model. Clearly, P-R responses in reality fall on a continuum, but we propose that classifying 

by three types highlights the end member responses. This classification can be further tested 

and refined as more data become available for sub-Saharan Africa (and other parts of the 

world). 
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More details of the observed P-R and rP-cR plots (Figures 2 and 3) summarized in the main 

text are as follows: 

Type 1: Natitingou is characterised by low storage fractured bedrock (Sy = 0.4%)45; water-table 

variations are around 10 m annually and each year the subsurface fills to a shallow level. In 

combination with straight recessions, this hydrogeological context leads to temporally small 

variation of recharge each year (CoV = 5%) despite large variations in annual precipitation 

(observed range is 850-1592 mm/y). At Soroti, the water table is always deeper than 5 m below 

ground level (bgl) within weathered basement rock but, despite this, exhibits rapid responses 

to precipitation events indicative of preferential flow processes49. The observed consistency in 

recharge from year to year may be controlled by a finite near surface water store to which the 

water table responds46 although further site-investigations are needed to confirm precise 

controls. 

Type 2: Where diffuse recharge is predominant, this type of sensitivity is expected if 

precipitation thresholds are governed by prevailing soil moisture deficits (or other near-surface 

storage/losses). We may expect increased deviation to the left of the 1:1 line on the rP-cR plots 

to increase with aridity and the build-up of larger soil moisture deficits. However, we may also 

expect exceptions to this to occur in cases where preferential flow processes49 are prevalent 

and recharge can ‘bypass’ the soil matrix and be less affected by soil moisture deficits so that 

precipitation thresholds may be lower than anticipated than under uniform flow assumptions. 

Where focussed recharge is predominant, thresholds for its occurrence are expected to be 

governed by hydrological processes which dominate in drylands, such as generation of 

infiltration-excess runoff producing ephemeral channel flow50. These processes can be locally 

variable and have complex dependencies on, for example, land cover, drainage network 

density, soil structure and antecedent moisture conditions. In the observed responses of this 

type in the humid to sub-humid environments (i.e. Benin (Cococodji), Uganda (Apac) and 
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Ghana (Accra)), thresholds appear to be relatively small. This is consistent with detailed 

analysis available for Cococodji and Apac which suggest values of 5 mm/d and <10 mm/d 

respectively for these sites; there are no existing studies to corroborate this for Ghana. For 

semi-arid sites in Tanzania and Zimbabwe we observe that larger precipitation thresholds may 

need to be overcome for recharge to occur (darker green in Figures 2 to 4). Again, this is 

consistent with detailed analysis carried out for Tanzania which indicates that recharge occurs 

only after persistent rainfall exceeding 70 mm over a 9-day period51. For the two Niger sites, 

despite also having greater aridity, thresholds are apparently much lower but this is explained 

by daily precipitation thresholds of 10-20 mm d-1 known to be required to generate stream 

flow52, and thus focussed recharge, in this area. In Burkina Faso, focussed recharge from a 

nearby managed reservoir (“barrage”) moderate the impact of inter-annual precipitation 

variability on recharge variability moving the rP-cR line closer to the 1:1 (Figure 3) than might 

be the case without a reservoir. 

Type 3: The two Namibian sites are in a hyper-arid environment dependent on runoff 

generation from a large upstream catchment to supply focussed recharge during streamflow 

events. Conditions for runoff generation are governed by intense monthly precipitation 

occurring not necessarily within years of relatively high total precipitation. In contrast, at 

Modderfontein (South Africa), focussed recharge is much more local, but the limestone 

bedrock in this location is typified by highly non-linear hydrological processes which generate 

complex P-R relationships (see Supplementary Information). 

 

In summary, the controls on the observed P-R and rP-cR sensitivities are a complex interaction 

between the prevailing climate and local controls on recharge generation.  

  



34 

 

Methods References 

 

26 Bloomfield, J. & Marchant, B. Analysis of groundwater drought building on the 

standardised precipitation index approach. Hydrology and Earth System Sciences 17, 

4769-4787 (2013). 

27 Schneider, U. B., Andreas; Finger, Peter; Meyer-Christoffer, Anja; Ziese, Markus 

(2018). 

28 Funk, C. et al. The climate hazards infrared precipitation with stations—a new 

environmental record for monitoring extremes. Scientific Data 2, 150066 (2015). 

29 Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to 

NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). 

Journal of Climate 21, 2283-2296 (2008). 

30 Saji, N., Goswami, B., Vinayachandran, P. & Yamagata, T. A dipole mode in the 

tropical Indian Ocean. Nature 401, 360 (1999). 

31 Janowiak, J. E. An investigation of interannual rainfall variability in Africa. Journal of 

Climate 1, 240-255 (1988). 

32 Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns 

associated with the El Niño/Southern Oscillation. Monthly Weather Review 115, 1606-

1626 (1987). 

33 Shannon, L., Boyd, A., Brundrit, G. & Taunton-Clark, J. On the existence of an El 

Niño-type phenomenon in the Benguela system. Journal of Marine Research 44, 495-

520 (1986). 

34 Reason, C. J. & Smart, S. Tropical south east Atlantic warm events and associated 

rainfall anomalies over southern Africa. Frontiers in Environmental Science 3, 24 

(2015). 



35 

 

35 Rouault, M., Florenchie, P., Fauchereau, N. & Reason, C. J. South East tropical Atlantic 

warm events and southern African rainfall. Geophysical Research Letters 30 (2003). 

36 Thiaw, W. Africa: The floods of the Sahel in 2012, in “State of the Climate in 2012”. . 

Bull. Amer. Meteor. Soc. 94(8), S164–S165 (2013). 

37 Cornforth, R. J. West African Monsoon 2012. Weather 68, 256-263 (2013). 

38 Healy, R. W. & Cook, P. G. Using groundwater levels to estimate recharge. 

Hydrogeology Journal 10, 91-109 (2002). 

39 Crosbie, R. S., Binning, P. & Kalma, J. D. A time series approach to inferring 

groundwater recharge using the water table fluctuation method. Water Resources 

Research 41 (2005). 

40 Cuthbert, M. An improved time series approach for estimating groundwater recharge 

from groundwater level fluctuations. Water Resources Research 46 (2010). 

41 Cuthbert, M. et al. Understanding and quantifying focused, indirect groundwater 

recharge from ephemeral streams using water table fluctuations. Water Resources 

Research 52, 827-840 (2016). 

42 Cuthbert, M. Straight thinking about groundwater recession. Water Resources Research 

50, 2407-2424 (2014). 

43 Xu, Y. & Beekman, H. E. Groundwater recharge estimation in arid and semi-arid 

southern Africa. Hydrogeology Journal, 1-15 (2018). 

44 Taylor, R., Tindimugaya, C., Barker, J., Macdonald, D. & Kulabako, R. Convergent 

radial tracing of viral and solute transport in gneiss saprolite. Groundwater 48, 284-294 

(2010). 

45 Kotchoni, D. V. et al. Relationships between rainfall and groundwater recharge in 

seasonally humid Benin: a comparative analysis of long-term hydrographs in 

sedimentary and crystalline aquifers. Hydrogeology Journal 27, 447 (2019). 



36 

 

46 Cuthbert, M., Mackay, R. & Nimmo, J. Linking soil moisture balance and source-

responsive models to estimate diffuse and preferential components of groundwater 

recharge. Hydrology and Earth System Sciences 17, 1003-1019 (2013). 

47 Eilers, V., Carter, R. C. & Rushton, K. R. A single layer soil water balance model for 

estimating deep drainage (potential recharge): An application to cropped land in semi-

arid North-east Nigeria. Geoderma 140, 119-131 (2007). 

48 Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from 

temperature. Applied Engineering in Agriculture 1, 96-99 (1985). 

49 Beven, K. & Germann, P. Macropores and water flow in soils revisited. Water 

Resources Research 49, 3071-3092 (2013). 

50 Wheater, H., Sorooshian, S. & Sharma, K. D. Hydrological modelling in arid and semi-

arid areas.  (Cambridge University Press, 2007). 

51 Seddon, D. The Climate Controls and Process of Groundwater Recharge in a Semi-

Arid Tropical Environment: Evidence from the Makutapora Basin, Tanzania. PhD 

thesis, University College London, (2019). 

52 Massuel, S. et al. Integrated surface water–groundwater modelling in the context of 

increasing water reserves of a regional Sahelian aquifer. Hydrological Sciences Journal 

56, 1242-1264 (2011). 

  



37 

 

Data Availability Statement 

Data license agreements do not allow us to upload the raw precipitation and groundwater level 

time series. However, the agencies from whom these data can be requested are listed in the 

Supplementary Information, and the authors are happy to provide guidance on doing so. Digital 

datasets of calculated annual recharge values and precipitation anomalies are freely available 

to download online from https://doi.org/10.6084/m9.figshare.5103796 and time series of 

groundwater-level deviations from the mean are available from 

https://dx.doi.org/10.5285/a6d78c2e-3420-4346-9182-4fd437672412 and https://www.un-

igrac.org/ggmn/chronicles. 

 

Code Availability Statement 

A Python script for generating the forward models used to produce Extended Data Figure 3, 

and a spreadsheet tool used for conducting Water Table Fluctuation analyses are freely 

available to download online from https://doi.org/10.6084/m9.figshare.5103796 . 
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Extended Data Figures 

 

Extended Data Figure 1. Long term groundwater level records for sub-Saharan Africa 

alongside monthly precipitation. Timescales are plotted in a-g and h-n on different, but 

consistent, relative scales for comparison purposes. *Mean Annual Precipitation (MAP) is 

reported for Claratal raingauge as this is representative of the climate of the runoff generation 

area from which focused recharge is derived at the analysed hyper-arid Namibian groundwater 

level monitoring locations. 
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Extended Data Figure 2. Correlations between combinations of climate parameters and 

groundwater recharge. a-c uses the aridity index from the location of the Claratal rainguage 

for the Namibian data points. d-f uses the aridity index from the groundwater monitoring 

locations for the Namibian data points. Relationships in h include error bars for the total 

uncertainty for uncertainty in both recession and specific yield, but note that the diffuse and 

focused recharge estimates will be applicable to different spatial scales. In particular, focused 

recharge estimates will be valid only in regions closest to the losing stream of interest. Hence 

comparisons of long term average recharge rates must take this into account. 
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Extended Data Figure 3. Cumulative contribution of annual recharge (by hydrological 

year) to total recharge for ranked annual precipitation (largest to smallest) for a suite of 

forward models (rP-cR plots). Illustrates generic model typologies derived from running a 

range of forward recharge model structures using two different climate time series from a 

Dodoma (semi-arid Tanzania) and b Cococodji (humid Benin). Types are defined as: (i) 

consistent recharge rates from year to year across the range of annual rainfalls (purple), (ii) 
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Increasing annual recharge with annual rainfall above a threshold (lightgreen to darkgreen as 

thresholds increase), and (iii) complex relationships between annual rainfall and recharge 

amount (orange). 

 

Extended Data Figure 4. Precipitation anomalies (mm/month) across Southern Africa 

during the local wet season December-February 1999-2000. Locations of 6 of the 

groundwater level records in 4 countries are indicated. This example year of extreme recharge 

at the sites in Zimbabwe, South Africa and Namibia (Extended Data Table 2) illustrates the 

large-scale structure of precipitation anomalies associated with local recharge extremes, in this 

case associated with La Niña conditions in the tropical Pacific. The north-south dipole of 

precipitation anomalies around an axis at ~15ºS is characteristic of ENSO events and the major 

recharge years at the Tanzania site are associated with a reversal of this dipole during El Niño 

events (Extended Data Table 2).
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Extended Data Tables 

Country Location Aridity 
(Aridity Index) 

Period Aquifer lithology Sy 

(%) 
Rainfall 
modality 

Recharge 
frequency 
category 

Dominant 
recharge 
process 

Long term 
average 
recharge 
(mm/dec) 

Precipitation-
Recharge 

Sensitivity Type 

Benin Cococodji humid (0.81) 1991-2017 unconsolidated sands 15-17 Unimodal Seasonal Diffuse 4600-6430 Type 2 

Benin Natitingou sub-humid (0.64) 1997-2014 fissured quartzite 0.3-0.5 Bimodal Seasonal Diffuse 430-760 Type 1 

Burkina Faso Ouagadougou semi-arid (0.39) 1978-2016 weathered granite 8-12 Unimodal Seasonal Focussed 1400-2500 Type 2 

Ghana Accra sub-humid (0.57) 1976-1994 weathered phyllite 2-6 Bimodal Seasonal Diffuse 470-1100 Type 2 

Namibia Rooibank hyper-arid (0.01) 1998-2017 alluvium 20-40 Unimodal Episodic Focussed 930-2100 Type 3 

Namibia Swartbank hyper-arid (0.01) 1992-2016 alluvium 20-40 Unimodal Episodic Focussed 1200-3500 Type 3 

Niger Banizoumbou semi-arid (0.21) 1996-2016 sandstone 3.2-4.3 Unimodal Seasonal Focussed 220-340 Type 2 

Niger Berkiawel semi-arid (0.22) 1994-2016 sandstone 1.4-2.7 Unimodal Seasonal Focussed 200-530 Type 2 

South Africa Modderfontein semi-arid (0.35) 1976-2015 dolomite 2-4 Unimodal Episodic Focussed 880-2000 Type 3 

South Africa Sterkloop semi-arid (0.38) 1973-2016 weathered gneiss 1-5 Unimodal Seasonal Focussed 100-690 Type 2 

Tanzania Makutapora semi-arid (0.35) 1955-2016 weathered granite 4-7 Unimodal Episodic Focussed 520-1100 Type 2 

Uganda Apac humid (0.72) 1999-2015 weathered gneiss 2-6 Bimodal Seasonal Diffuse 400-1400 Type 2 

Uganda Soroti humid (0.74) 1999-2017 weathered gneiss 2-6 Bimodal Seasonal Diffuse 990-3000 Type 1 

Zimbabwe Khami semi-arid (0.34) 1989-2015 basalt 2-8 Unimodal Seasonal Focussed 170-730 Type 2 

 

Extended Data Table 1. Summary of the 14 analysed groundwater-level and precipitation time series in sub-Saharan Africa. Long term 

average recharge values reflect combined uncertainties in specific yield and the applied rates of groundwater recession in the Water Table 

Fluctuation analysis; the unconstrained spatial representativity of each value is such that direct comparison of these rates between locations may 

be misleading. 
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Location Extreme 
recharge 

years 

Approximate scale of related 
rainfall anomalies 

Likely large scale drivers 

Rooibank 
Swartbank 
(Namibia) 

2010-2011 seasonal/regional Benguela Niño 

1999-2000 
 

sub-seasonal/regional 
 

N/A 
 

2008-2009 
 

sub-seasonal/local 
 

N/A 
 

1996-1997 
 

sub-seasonal/local 
 

N/A 
 

2005-2006 seasonal/regional Benguela Niño 

Sterkloop (South 
Africa) 

1999-2000 
 

seasonal/regional 
 

La Niña 
 

1995-1996 seasonal/regional La Niña 

Khami 
(Zimbabwe) 

1999-2000 
 

seasonal/regional 
 

La Niña 
 

1995-1996 seasonal/regional La Niña 

Makutapora 
(Tanzania) 

1997-98 
 

seasonal/regional 
 

El Niño/Indian Ocean Zonal Mode positive phase 

2006-07 
 

seasonal/regional 
 

Indian Ocean Zonal Mode positive phase 
 

2015-16 
 

seasonal/regional El Niño/weekly positive Indian Ocean Zonal Mode 

1989-90 sub-seasonal/regional N/A 

Berkiawel 
(Niger) 

1998 sub-seasonal/local-meso-scale N/A 

Ouagadougou 
(Burkina Faso) 

2012 seasonal/regional Tropical Atlantic dipole and Active Madden-Julian Oscillation 

 

 

Extended Data Table 2. Observed extreme recharge events and their association with 

drivers of climate variability. Extreme recharge events for each site are listed in order of 

magnitude; N/A denotes not applicable. 

 


