19 research outputs found

    Right ventriculo-arterial uncoupling and impaired contractile reserve in obese patients with unexplained exercise intolerance

    No full text
    Background Right ventricular (RV) dysfunction and heart failure with preserved ejection fraction may contribute to exercise intolerance in obesity. To further define RV exercise responses, we investigated RV–arterial coupling in obesity with and without development of exercise pulmonary venous hypertension (ePVH). Methods RV–arterial coupling defined as RV end-systolic elastance/pulmonary artery elastance (Ees/Ea) was calculated from invasive cardiopulmonary exercise test data in 6 controls, 8 obese patients without ePVH (Obese−ePVH) and 8 obese patients with ePVH (Obese+ePVH) within a larger series. ePVH was defined as a resting pulmonary arterial wedge pressure < 15 mmHg but ≥ 20 mmHg on exercise. Exercise haemodynamics were further evaluated in 18 controls, 20 Obese−ePVH and 17 Obese+ePVH patients. Results Both Obese−ePVH and Obese+ePVH groups developed exercise RV–arterial uncoupling (peak Ees/Ea = 1.45 ± 0.26 vs 0.67 ± 0.18 vs 0.56 ± 0.11, p < 0.001, controls vs Obese−ePVH vs Obese+ePVH respectively) with higher peak afterload (peak Ea = 0.31 ± 0.07 vs 0.75 ± 0.32 vs 0.88 ± 0.62 mL/mmHg, p = 0.043) and similar peak contractility (peak Ees = 0.50 ± 0.16 vs 0.45 ± 0.22 vs 0.48 ± 0.17 mL/mmHg, p = 0.89). RV contractile reserve was highest in controls (ΔEes = 224 ± 80 vs 154 ± 39 vs 141 ± 34% of baseline respectively, p < 0.001). Peak Ees/Ea correlated with peak pulmonary vascular compliance (PVC, r = 0.53, p = 0.02) but not peak pulmonary vascular resistance (PVR, r = − 0.20, p = 0.46). In the larger cohort, Obese+ePVH patients on exercise demonstrated higher right atrial pressure, lower cardiac output and steeper pressure-flow responses. BMI correlated with peak PVC (r = − 0.35, p = 0.04) but not with peak PVR (r = 0.24, p = 0.25). Conclusions Exercise RV–arterial uncoupling and reduced RV contractile reserve further characterise obesity-related exercise intolerance. RV dysfunction in obesity may develop independent of exercise LV filling pressures

    Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    Get PDF
    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes
    corecore