82 research outputs found

    Accelerated Multi-Organization Conflict Resolution

    Get PDF
    In this paper, we discuss two situations where two organizations with different aims recognized the dysfunctionality of their relationship. In each of these cases, which were long running (6–8 months), the organizations had worked hard to resolve this dysfunctionality, and conflict, by organizing off-site meetings designed to resolve the conflict. These 1-day meetings failed. Subsequently Group Support System workshops were used for 1 day workshops and in each case the conflict was essentially resolved within 55 min. The research reported in this paper seeks to answer the question: what happened in these cases that led to a resolution of the conflict in such a short time period, given other attempts had failed? Specifically the paper explores the impact of the GSS used to facilitate two organizations seeking to resolve a conflictual situation

    Changes in corticospinal excitability and the direction of evoked movements during motor preparation: A TMS study

    Get PDF
    BACKGROUND: Preparation of the direction of a forthcoming movement has a particularly strong influence on both reaction times and neuronal activity in the primate motor cortex. Here, we aimed to find direct neurophysiologic evidence for the preparation of movement direction in humans. We used single-pulse transcranial magnetic stimulation (TMS) to evoke isolated thumb-movements, of which the direction can be modulated experimentally, for example by training or by motor tasks. Sixteen healthy subjects performed brisk concentric voluntary thumb movements during a reaction time task in which the required movement direction was precued. We assessed whether preparation for the thumb movement lead to changes in the direction of TMS-evoked movements and to changes in amplitudes of motor-evoked potentials (MEPs) from the hand muscles. RESULTS: When the required movement direction was precued early in the preparatory interval, reaction times were 50 ms faster than when precued at the end of the preparatory interval. Over time, the direction of the TMS-evoked thumb movements became increasingly variable, but it did not turn towards the precued direction. MEPs from the thumb muscle (agonist) were differentially modulated by the direction of the precue, but only in the late phase of the preparatory interval and thereafter. MEPs from the index finger muscle did not depend on the precued direction and progressively decreased during the preparatory interval. CONCLUSION: Our data show that the human corticospinal movement representation undergoes progressive changes during motor preparation. These changes are accompanied by inhibitory changes in corticospinal excitability, which are muscle specific and depend on the prepared movement direction. This inhibition might indicate a corticospinal braking mechanism that counteracts any preparatory motor activation

    Neuroimaging in Dementia

    Get PDF
    Dementia is a common illness with an incidence that is rising as the aged population increases. There are a number of neurodegenerative diseases that cause dementia, including Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal dementia, which is subdivided into the behavioral variant, the semantic variant, and nonfluent variant. Numerous other neurodegenerative illnesses have an associated dementia, including corticobasal degeneration, Creutzfeldt–Jakob disease, Huntington’s disease, progressive supranuclear palsy, multiple system atrophy, Parkinson’s disease dementia, and amyotrophic lateral sclerosis. Vascular dementia and AIDS dementia are secondary dementias. Diagnostic criteria have relied on a constellation of symptoms, but the definite diagnosis remains a pathologic one. As treatments become available and target specific molecular abnormalities, differentiating amongst the various primary dementias early on becomes essential. The role of imaging in dementia has traditionally been directed at ruling out treatable and reversible etiologies and not to use imaging to better understand the pathophysiology of the different dementias. Different brain imaging techniques allow the examination of the structure, biochemistry, metabolic state, and functional capacity of the brain. All of the major neurodegenerative disorders have relatively specific imaging findings that can be identified. New imaging techniques carry the hope of revolutionizing the diagnosis of neurodegenerative disease so as to obtain a complete molecular, structural, and metabolic characterization, which could be used to improve diagnosis and to stage each patient and follow disease progression and response to treatment. Structural and functional imaging modalities contribute to the diagnosis and understanding of the different dementias

    The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala

    Get PDF
    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.This work was conducted within the Behavioural and Clinical Neuroscience Institute, a joint initiative funded by the Wellcome Trust and the UK Medical Research Council, in the Department of Psychology at the University of Cambridge. This work was funded by a UK Medical Research Council programme grant (no. G1002231) awarded to BJE and ALM. PR was supported by a Department of Physiology and Pharmacology Fellowship at the Sapienza University of Rome, and an Italian Society of Pharmacology Fellowship. ALM is the Ferreras-Willetts Fellow in Neuroscience at Downing College, Cambridge. The manuscript was partly prepared while ALM was an Erskine Visiting Cambridge Fellow at the University of Canterbury, Christchurch, New Zealand

    Structural mechanism of muscle contraction

    No full text
    X-ray crystallography shows the myosin cross-bridge to exist in two conformations, the beginning and end of the "power stroke." A long lever-arm undergoes a 60 degrees to 70 degrees rotation between the two states. This rotation is coupled with changes in the active site (OPEN to CLOSED) and phosphate release. Actin binding mediates the transition from CLOSED to OPEN. Kinetics shows that the binding of myosin to actin is a two-step process which affects ATP and ADP affinity. The structural basis of these effects is not explained by the presently known conformers of myosin. Therefore, other states of the myosin cross-bridge must exist. Moreover, cryoelectronmicroscopy has revealed other angles of the cross-bridge lever arm induced by ADP binding. These structural states are presently being characterized by site-directed mutagenesis coupled with kinetic analysis
    corecore