90 research outputs found
Accreting Black Holes
This chapter provides a general overview of the theory and observations of
black holes in the Universe and on their interpretation. We briefly review the
black hole classes, accretion disk models, spectral state classification, the
AGN classification, and the leading techniques for measuring black hole spins.
We also introduce quasi-periodic oscillations, the shadow of black holes, and
the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and
Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer
Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin
note: substantial text overlap with arXiv:1711.1025
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
Energy Extraction from Spinning Black Holes via Relativistic Jets
It has for long been an article of faith among astrophysicists that black
hole spin energy is responsible for powering the relativistic jets seen in
accreting black holes. Two recent advances have strengthened the case. First,
numerical general relativistic magnetohydrodynamic simulations of accreting
spinning black holes show that relativistic jets form spontaneously. In at
least some cases, there is unambiguous evidence that much of the jet energy
comes from the black hole, not the disk. Second, spin parameters of a number of
accreting stellar-mass black holes have been measured. For ballistic jets from
these systems, it is found that the radio luminosity of the jet correlates with
the spin of the black hole. This suggests a causal relationship between black
hole spin and jet power, presumably due to a generalized Penrose process.Comment: 15 pages, 4 figures. To appear in the proceedings of the conference
"Relativity and Gravitation: 100 Years after Einstein in Prague" held in
Prague, June 25-29, 2012, Ji\v{r}\'i Bi\v{c}\'ak and Tom\'a\v{s} Ledvinka
editors, Max-Planck Research Library for the History and Development of
Knowledge, Open Access Edition, Berlin (2013
Black hole spin: theory and observation
In the standard paradigm, astrophysical black holes can be described solely
by their mass and angular momentum - commonly referred to as `spin' - resulting
from the process of their birth and subsequent growth via accretion. Whilst the
mass has a standard Newtonian interpretation, the spin does not, with the
effect of non-zero spin leaving an indelible imprint on the space-time closest
to the black hole. As a consequence of relativistic frame-dragging, particle
orbits are affected both in terms of stability and precession, which impacts on
the emission characteristics of accreting black holes both stellar mass in
black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN).
Over the last 30 years, techniques have been developed that take into account
these changes to estimate the spin which can then be used to understand the
birth and growth of black holes and potentially the powering of powerful jets.
In this chapter we provide a broad overview of both the theoretical effects of
spin, the means by which it can be estimated and the results of ongoing
campaigns.Comment: 55 pages, 5 figures. Published in: "Astrophysics of Black Holes -
From fundamental aspects to latest developments", Ed. Cosimo Bambi, Springer:
Astrophysics and Space Science Library. Additional corrections mad
Effects of Tailored Surface Chemistry on Desorption Electrospray Ionization Mass Spectrometry: a Surface-Analytical Study by XPS and AFM
Neural processing of natural sounds
Natural sounds include animal vocalizations, environmental sounds such as wind, water and fire noises and non-vocal sounds made by animals and humans for communication. These natural sounds have characteristic statistical properties that make them perceptually salient and that drive auditory neurons in optimal regimes for information transmission.Recent advances in statistics and computer sciences have allowed neuro-physiologists to extract the stimulus-response function of complex auditory neurons from responses to natural sounds. These studies have shown a hierarchical processing that leads to the neural detection of progressively more complex natural sound features and have demonstrated the importance of the acoustical and behavioral contexts for the neural responses.High-level auditory neurons have shown to be exquisitely selective for conspecific calls. This fine selectivity could play an important role for species recognition, for vocal learning in songbirds and, in the case of the bats, for the processing of the sounds used in echolocation. Research that investigates how communication sounds are categorized into behaviorally meaningful groups (e.g. call types in animals, words in human speech) remains in its infancy.Animals and humans also excel at separating communication sounds from each other and from background noise. Neurons that detect communication calls in noise have been found but the neural computations involved in sound source separation and natural auditory scene analysis remain overall poorly understood. Thus, future auditory research will have to focus not only on how natural sounds are processed by the auditory system but also on the computations that allow for this processing to occur in natural listening situations.The complexity of the computations needed in the natural hearing task might require a high-dimensional representation provided by ensemble of neurons and the use of natural sounds might be the best solution for understanding the ensemble neural code
Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection
The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
- …
