250 research outputs found

    Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics

    Full text link
    We present an inverted GaAs 2D electron gas with self-assembled InAs quantum dots in close proximity, with the goal of combining quantum transport with quantum optics experiments. We have grown and characterized several wafers -- using transport, AFM and optics -- finding narrow-linewidth optical dots and high-mobility, single subband 2D gases. Despite being buried 500 nm below the surface, the dots are clearly visible on AFM scans, allowing precise localization and paving the way towards a hybrid quantum system integrating optical dots with surface gate-defined nanostructures in the 2D gas.Comment: 4 pages, 5 figures (color

    A scalable optical detection scheme for matter wave interferometry

    Full text link
    Imaging of surface adsorbed molecules is investigated as a novel detection method for matter wave interferometry with fluorescent particles. Mechanically magnified fluorescence imaging turns out to be an excellent tool for recording quantum interference patterns. It has a good sensitivity and yields patterns of high visibility. The spatial resolution of this technique is only determined by the Talbot gratings and can exceed the optical resolution limit by an order of magnitude. A unique advantage of this approach is its scalability: for certain classes of nano-sized objects, the detection sensitivity will even increase significantly with increasing size of the particle.Comment: 10 pages, 4 figure

    Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors

    Full text link
    We measured the single-photon detection efficiency of NbN superconducting single photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~5% at 488 nm to ~30% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For lossy NbN films, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, we find that the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~70% can be reached for a detector on Si or GaAs, without the need for an optical cavity.Comment: 15 pages, 5 figures, submitted to Journal of Applied Physic

    Numerical study of the strongly screened vortex glass model in an external field

    Full text link
    The vortex glass model for a disordered high-T_c superconductor in an external magnetic field is studied in the strong screening limit. With exact ground state (i.e. T=0) calculations we show that 1) the ground state of the vortex configuration varies drastically with infinitesimal variations of the strength of the external field, 2) the minimum energy of global excitation loops of length scale L do not depend on the strength of the external field, however 3) the excitation loops themself depend sensibly on the field. From 2) we infer the absence of a true superconducting state at any finite temperature independent of the external field.Comment: 6 pages RevTeX, 5 eps-figures include

    The wave nature of biomolecules and fluorofullerenes

    Full text link
    We demonstrate quantum interference for tetraphenylporphyrin, the first biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a near-field Talbot-Lau interferometer. For the porphyrins, which are distinguished by their low symmetry and their abundant occurence in organic systems, we find the theoretically expected maximal interference contrast and its expected dependence on the de Broglie wavelength. For C60F48 the observed fringe visibility is below the expected value, but the high contrast still provides good evidence for the quantum character of the observed fringe pattern. The fluorofullerenes therefore set the new mark in complexity and mass (1632 amu) for de Broglie wave experiments, exceeding the previous mass record by a factor of two.Comment: 5 pages, 4 figure

    Comparison of the scintillation noise above different observatories measured with MASS instruments

    Get PDF
    Scintillation noise is a major limitation of ground base photometric precision. An extensive dataset of stellar scintillation collected at 11 astronomical sites world-wide with MASS instruments was used to estimate the scintillation noise of large telescopes in the case of fast photometry and traditional long-exposure regime. Statistical distributions of the corresponding parameters are given. The scintillation noise is mostly determined by turbulence and wind in the upper atmosphere and comparable at all sites, with slightly smaller values at Mauna Kea and largest noise at Tolonchar in Chile. We show that the classical Young's formula under-estimates the scintillation noise.The temporal variations of the scintillation noise are also similar at all sites, showing short-term variability at time scales of 1 -- 2 hours and slower variations, including marked seasonal trends (stronger scintillation and less clear sky during local winter). Some correlation was found between nearby observatories.Comment: Accepted for publication in Astronomy and Astrophysics, 14 pages, 11 figure

    Autoinducers act as biological timers in Vibrio harveyi

    Get PDF
    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations

    Quantum physics meets biology

    Full text link
    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the last decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world view of quantum coherences, entanglement and other non-classical effects, has been heading towards systems of increasing complexity. The present perspective article shall serve as a pedestrian guide to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future quantum biology, its current status, recent experimental progress and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.Comment: 26 pages, 4 figures, Perspective article for the HFSP Journa

    Spatial transcriptomics combined with single-cell RNA-sequencing unravels the complex inflammatory cell network in atopic dermatitis

    Get PDF
    BackgroundAtopic dermatitis (AD) is the most common chronic inflammatory skin disease with complex pathogenesis for which the cellular and molecular crosstalk in AD skin has not been fully understood.MethodsSkin tissues examined for spatial gene expression were derived from the upper arm of 6 healthy control (HC) donors and 7 AD patients (lesion and nonlesion). We performed spatial transcriptomics sequencing to characterize the cellular infiltrate in lesional skin. For single‐cell analysis, we analyzed the single‐cell data from suction blister material from AD lesions and HC skin at the antecubital fossa skin (4 ADs and 5 HCs) and full‐thickness skin biopsies (4 ADs and 2 HCs). The multiple proximity extension assays were performed in the serum samples from 36 AD patients and 28 HCs.ResultsThe single‐cell analysis identified unique clusters of fibroblasts, dendritic cells, and macrophages in the lesional AD skin. Spatial transcriptomics analysis showed the upregulation of COL6A5, COL4A1, TNC, and CCL19 in COL18A1‐expressing fibroblasts in the leukocyte‐infiltrated areas in AD skin. CCR7‐expressing dendritic cells (DCs) showed a similar distribution in the lesions. Additionally, M2 macrophages expressed CCL13 and CCL18 in this area. Ligand–receptor interaction analysis of the spatial transcriptome identified neighboring infiltration and interaction between activated COL18A1‐expressing fibroblasts, CCL13‐ and CCL18‐expressing M2 macrophages, CCR7‐ and LAMP3‐expressing DCs, and T cells. As observed in skin lesions, serum levels of TNC and CCL18 were significantly elevated in AD, and correlated with clinical disease severity.ConclusionIn this study, we show the unknown cellular crosstalk in leukocyte‐infiltrated area in lesional skin. Our findings provide a comprehensive in‐depth knowledge of the nature of AD skin lesions to guide the development of better treatments

    Th2/Th17 cell associated cytokines found in seroma fluids after breast cancer surgery

    Get PDF
    Purpose The development of a seroma after breast cancer surgery is a common postoperative complication seen after simple mastectomy and axillary surgery. We could recently demonstrate that breast cancer patients undergoing a simple mastectomy with subsequent seroma formation developed a T-helper cell increase within the aspirated fluid measured by flow cytometry. The same study revealed a Th2 and/or a Th17 immune response in peripheral blood and seroma fluid of the same patient. Based on these results and within the same study population, we now analyzed the Th2/Th17 cell associated cytokine content as well as the best known clinical important cytokine IL-6. Methods Multiplex cytokine measurements (IL-4, IL-5, IL-13, IL-10, IL-17, and IL-22) were done on 34 seroma fluids (Sf) after fine needle aspiration of patients who developed a seroma after a simple mastectomy. Serum of the same patient (Sp) and that of healthy volunteers (Sc) were used as controls. Results We found the Sf to be highly cytokine rich. Almost all analyzed cytokines were significantly higher in abundance in the Sf compared to Sp and Sc, especially IL-6, which promotes Th17 differentiation as well as suppresses Th1 differentiation in favor of Th2 development. Conclusion Our Sf cytokine measurements reflect a local immune event. In contrast, former study results on T-helper cell populations in both Sf and Sp tend to demonstrate a systemic immune process
    corecore