23,730 research outputs found

    On the Computation of Power in Volume Integral Equation Formulations

    Full text link
    We present simple and stable formulas for computing power (including absorbed/radiated, scattered and extinction power) in current-based volume integral equation formulations. The proposed formulas are given in terms of vector-matrix-vector products of quantities found solely in the associated linear system. In addition to their efficiency, the derived expressions can guarantee the positivity of the computed power. We also discuss the application of Poynting's theorem for the case of sources immersed in dissipative materials. The formulas are validated against results obtained both with analytical and numerical methods for scattering and radiation benchmark cases

    Brown dwarfs in the Hyades and beyond?

    Full text link
    We have used both the Low-Resolution Imaging Spectrograph and the HIRES echelle spectrograph on the Keck telescopes to obtain spectra of twelve candidate members of the Hyades cluster identified by Leggett and Hawkins (1988, 1989). All of the objects are chromospherically-active, late-type M-dwarfs, with Hα\alpha equivalent widths varying from 1 to 30\AA. Based on our measured radial velocities, the level of stellar activity and other spectroscopic features, only one of the twelve stars has properties consistent with cluster membership. We consider how this result affects estimates of the luminosity and mass function of the Hyades cluster. Five of the eleven field stars have weak K I 7665/7699\AA and CaH absorption as compared with M-dwarf standards of the same spectral type, suggesting a lower surface gravity. Two of these sources, LH0416+14 and LH0419+15, exhibit significant lithium 6708 \AA absorption. Based partly on parallax measurements by the US Naval Observatory (Harris et al, 1998), we identify all five as likely to be young, pre-main sequence objects in or near the Taurus-Auriga association at distances of between 150 and 250 parsecs. A comparison with theoretical models of pre-main sequence stars indicates masses of less than 0.05 M⊙_\odot.Comment: to appear in AJ, January 1999; 34 pages, (Latex format), including 10 embedded postscript figures and two table

    Fluctuating volume-current formulation of electromagnetic fluctuations in inhomogeneous media: incandecence and luminescence in arbitrary geometries

    Get PDF
    We describe a fluctuating volume--current formulation of electromagnetic fluctuations that extends our recent work on heat exchange and Casimir interactions between arbitrarily shaped homogeneous bodies [Phys. Rev. B. 88, 054305] to situations involving incandescence and luminescence problems, including thermal radiation, heat transfer, Casimir forces, spontaneous emission, fluorescence, and Raman scattering, in inhomogeneous media. Unlike previous scattering formulations based on field and/or surface unknowns, our work exploits powerful techniques from the volume--integral equation (VIE) method, in which electromagnetic scattering is described in terms of volumetric, current unknowns throughout the bodies. The resulting trace formulas (boxed equations) involve products of well-studied VIE matrices and describe power and momentum transfer between objects with spatially varying material properties and fluctuation characteristics. We demonstrate that thanks to the low-rank properties of the associatedmatrices, these formulas are susceptible to fast-trace computations based on iterative methods, making practical calculations tractable. We apply our techniques to study thermal radiation, heat transfer, and fluorescence in complicated geometries, checking our method against established techniques best suited for homogeneous bodies as well as applying it to obtain predictions of radiation from complex bodies with spatially varying permittivities and/or temperature profiles

    5-micron photometry of late-type dwarfs

    Get PDF
    We present narrowband-M photometry of nine low-mass dwarfs with spectral types ranging from M2.5 to L0.5. Combining the (L'-M') colours derived from our observations with data from the literature, we find colours consistent with a Rayleigh-Jeans flux distribution for spectral types earlier than M5, but enhanced F_3.8/F_4.7 flux ratios (negative (L'-M') colours) at later spectral types. This probably reflects increased absorption at M' due to the CO fundamental band. We compare our results against recent model predictions and briefly discuss the implications.Comment: accepted for the Astronomical Journa

    Modeling of Alkane Oxidation Using Constituents and Species

    Get PDF
    It is currently not possible to perform simulations of turbulent reactive flows due in particular to complex chemistry, which may contain thousands of reactions and hundreds of species. This complex chemistry results in additional differential equations, making the numerical solution of the equation set computationally prohibitive. Reducing the chemical kinetics mathematical description is one of several important goals in turbulent reactive flow modeling. A chemical kinetics reduction model is proposed for alkane oxidation in air that is based on a parallel methodology to that used in turbulence modeling in the context of the Large Eddy Simulation. The objective of kinetic modeling is to predict the heat release and temperature evolution. This kinetic mechanism is valid over a pressure range from atmospheric to 60 bar, temperatures from 600 K to 2,500 K, and equivalence ratios from 0.125 to 8. This range encompasses diesel, HCCI, and gas-turbine engines, including cold ignition. A computationally efficient kinetic reduction has been proposed for alkanes that has been illustrated for n-heptane using the LLNL heptane mechanism. This model is consistent with turbulence modeling in that scales were first categorized into either those modeled or those computed as progress variables. Species were identified as being either light or heavy. The heavy species were decomposed into defined 13 constituents, and their total molar density was shown to evolve in a quasi-steady manner. The light species behave either in a quasi-steady or unsteady manner. The modeled scales are the total constituent molar density, Nc, and the molar density of the quasi-steady light species. The progress variables are the total constituent molar density rate evolution and the molar densities of the unsteady light species. The unsteady equations for the light species contain contributions of the type gain/loss rates from the heavy species that are modeled consistent with the developed mathematical forms for the total constituent molar density rate evolution; indeed, examination of these gain/loss rates shows that they also have a good quasi-steady behavior with a functional form resembling that of the constituent rate. This finding highlights the fact that the fitting technique provides a methodology that can be repeatedly used to obtain an accurate representation of full or skeletal kinetic models. Assuming success with the modified reduced model, the advantage of the modeling approach is clear. Because this model is based on the Nc rate rather than on that of individual heavy species, even if the number of species increases with increased carbon number in the alkane group, providing that the quasi-steady rate aspect persists, then extension of this model to higher alkanes should be conceptually straightforward, although it remains to be seen if the functional fits would remain valid or would require reconstruction

    On a notion of maps between orbifolds, I. function spaces

    Get PDF
    This is the first of a series of papers which are devoted to a comprehensive theory of maps between orbifolds. In this paper, we define the maps in the more general context of orbispaces, and establish several basic results concerning the topological structure of the space of such maps. In particular, we show that the space of such maps of C^r-class between smooth orbifolds has a natural Banach orbifold structure if the domain of the map is compact, generalizing the corresponding result in the manifold case. Motivations and applications of the theory come from string theory and the theory of pseudoholomorphic curves in symplectic orbifolds.Comment: Final version, 46 pages. Accepted for publication in Communications in Contemporary Mathematics. A preliminary version of this work is under a different title "A homotopy theory of orbispaces", arXiv: math. AT/010202

    The strong influence of substrate conductivity on droplet evaporation

    Get PDF
    We report the results of physical experiments that demonstrate the strong influence of the thermal conductivity of the substrate on the evaporation of a pinned droplet. We show that this behaviour can be captured by a mathematical model including the variation of the saturation concentration with temperature, and hence coupling the problems for the vapour concentration in the atmosphere and the temperature in the liquid and the substrate. Furthermore, we show that including two ad hoc improvements to the model, namely a Newton's law of cooling on the unwetted surface of the substrate and the buoyancy of water vapour in the atmosphere, give excellent quantitative agreement for all of the combinations of liquid and substrate considered

    Research Notes : Trisomic inheritance of a chimera in soybean

    Get PDF
    Introduction: In the summer of 1978, four chlorophyll-chimeric plants were observed within a population of \u27Clark\u27. The four plants had a similar phenotype, and were surmised to originate from a common parent. These four plants were single-plant threshed
    • …
    corecore