3,249 research outputs found

    Phage-displayed peptides targeting specific tissues and organs

    Get PDF
    AbstractPhage display is a powerful and widely used technique to find novel peptide ligands. A massive amount of peptide sequences have been identified for all kinds of materials, and peptides that..

    Bone Regeneration Using Mesenchymal Stromal Cells and Biocompatible Scaffolds: A Concise Review of the Current Clinical Trials

    Get PDF
    : Bone regenerative medicine is a clinical approach combining live osteoblast progenitors, such as mesenchymal stromal cells (MSCs), with a biocompatible scaffold that can integrate into host bone tissue and restore its structural integrity. Over the last few years, many tissue engineering strategies have been developed and thoroughly investigated; however, limited approaches have been translated to clinical application. Consequently, the development and clinical validation of regenerative approaches remain a centerpiece of investigational efforts towards the clinical translation of advanced bioengineered scaffolds. The aim of this review was to identify the latest clinical trials related to the use of scaffolds with or without MSCs to regenerate bone defects. A revision of the literature was performed in PubMed, Embase, and Clinicaltrials.gov from 2018 up to 2023. Nine clinical trials were analyzed according to the inclusion criteria: six presented in the literature and three reported in Clinicaltrials.gov. Data were extracted covering background trial information. Six of the clinical trials added cells to scaffolds, while three used scaffolds alone. The majority of scaffolds were composed of calcium phosphate ceramic alone, such as β-tricalcium phosphate (TCP) (two clinical trials), biphasic calcium phosphate bioceramic granules (three clinical trials), and anorganic bovine bone (two clinical trials), while bone marrow was the primary source of the MSCs (five clinical trials). The MSC expansion was performed in GMP facilities, using human platelet lysate (PL) as a supplement without osteogenic factors. Only one trial reported minor adverse events. Overall, these findings highlight the importance and efficacy of cell-scaffold constructs in regenerative medicine under different conditions. Despite the encouraging clinical results obtained, further studies are needed to assess their clinical efficacy in treating bone diseases to optimize their application

    Case studies for a new IoT programming paradigm: Fluidware

    Get PDF
    A number of scientific and technological advancements enabled turning the Internet of Things vision into reality. However, there is still a bottleneck in designing and developing IoT applications and services: each device has to be programmed individually, and services are deployed to specific devices. The Fluidware approach advocates that to truly scale and raise the level of abstraction a novel perspective is needed, focussing on device ensembles and dynamic allocation of resources. In this paper, we motivate the need for such a paradigm shift through three case studies emphasising a mismatch between state of art solutions and desired properties to achieve

    Effects of PPARγ agonists on the expression of leptin and vascular endothelial growth factor in breast cancer cells.

    Get PDF
    The obesity hormone leptin has been implicated in breast cancer development. Breast cancer cells express the leptin receptor and are able to synthesize leptin in response to obesity-related stimuli. Furthermore, leptin is a positive regulator of vascular endothelial growth factor (VEGF) and high levels of both proteins are associated with worse prognosis in breast cancer patients. Peroxisome proliferator-activated receptor (PPAR) ligands are therapeutic agents used in patient with Type 2 diabetes and obesity which have recently been studied for their potential anti-tumor effect. Here, we studied if these compounds, ciglitazone and GW1929, can affect the expression of leptin and VEGF in breast cancer cells. In MDA-MB-231 and MCF-7 breast cancer cells, treatment with submolar concentrations of ciglitazone and GW1929 elevated the expression of leptin and VEGF mRNA and protein, and increased cell viability and migration. These effects coincided with increased recruitment of PPAR to the proximal leptin promoter and decreased association of a transcriptional factor Sp1 with this DNA region

    What links BRAF to the heart function? New insights from the cardiotoxicity of BRAF inhibitors in cancer treatment

    Get PDF
    The RAS-related signalling cascade has a fundamental role in cell. It activates differentiation and survival. It is particularly important one of its molecules, B-RAF. B-RAF has been a central point for research, especially in melanoma. Indeed, it lacked effective therapeutic weapons since the early years of its study. Molecules targeting B-RAF have been developed. Nowadays, two classes of molecules are approved by FDA. Multi-target molecules, such as Sorafenib and Regorafenib, and selective molecules, such as Vemurafenib and Dabrafenib. Many other molecules are still under investigation. Most of them are studied in phase 1 trials. Clinical studies correlate B-RAF inhibitors and QT prolongation. Though this cardiovascular side effect is not common using these drugs, it must be noticed early and recognize its signals. Indeed, Oncologists and Cardiologists should work in cooperation to prevent lethal events, such as fatal arrhythmias or sudden cardiac death. These events could originate from an uncontrolled QT prolongation

    Polysaccharides on gelatin-based hydrogels differently affect chondrogenic differentiation of human mesenchymal stromal cells

    Get PDF
    Selection of feasible hybrid-hydrogels for best chondrogenic differentiation of human mesenchymal stromal cells (hMSCs) represents an important challenge in cartilage regeneration. In this study, three-dimensional hybrid hydrogels obtained by chemical crosslinking of poly (ethylene glycol) diglycidyl ether (PEGDGE), gelatin (G) without or with chitosan (Ch) or dextran (Dx) polysaccharides were developed. The hydrogels, namely G-PEG, G-PEG-Ch and G-PEG-Dx, were prepared with an innovative, versatile and cell-friendly technique that involves two preparation steps specifically chosen to increase the degree of crosslinking and the physical-mechanical stability of the product: a first homogeneous phase reaction followed by directional freezing, freeze-drying and post-curing. Chondrogenic differentiation of human bone marrow mesenchymal stromal cells (hBM-MSC) was tested on these hydrogels to ascertain whether the presence of different polysaccharides could favor the formation of the native cartilage structure. We demonstrated that the hydrogels exhibited an open pore porous morphology with high interconnectivity and the incorporation of Ch and Dx into the G-PEG common backbone determined a slightly reduced stiffness compared to that of G-PEG hydrogels. We demonstrated that G-PEG-Dx showed a significant increase of its anisotropic characteristic and G-PEG-Ch exhibited higher and faster stress relaxation behavior than the other hydrogels. These characteristics were associated to absence of chondrogenic differentiation on G-PEG-Dx scaffold and good chondrogenic differentiation on G-PEG and G-PEG-Ch. Furthermore, G-PEG-Ch induced the minor collagen proteins and the formation of collagen fibrils with a diameter like native cartilage. This study demonstrated that both anisotropic and stress relaxation characteristics of the hybrid hydrogels were important features directly influencing the chondrogenic differentiation potentiality of hBM-MSC

    Understanding the role of imidazolium-based ionic liquids in the electrochemical CO2 reduction reaction

    Get PDF
    The development of efficient CO 2 capture and utilization technologies driven by renewable energy sources is mandatory to reduce the impact of climate change. Herein, seven imidazolium-based ionic liquids (ILs) with different anions and cations were tested as catholytes for the CO2 electrocatalytic reduction to CO over Ag electrode. Relevant activity and stability, but different selectivities for CO2 reduction or the side H 2 evolution were observed. Density functional theory results show that depending on the IL anions the CO 2 is captured or converted. Acetate anions (being strong Lewis bases) enhance CO2 capture and H2 evolution, while fluorinated anions (being weaker Lewis bases) favour the CO2 electroreduction. Differently from the hydrolytically unstable 1-butyl-3-methylimidazolium tetrafluoroborate, 1-Butyl-3-Methylimidazolium Triflate was the most promising IL, showing the highest Faradaic efficiency to CO (>95%), and up to 8 h of stable operation at high current rates (−20 mA & −60 mA), which opens the way for a prospective process scale-up

    What You Find Depends on How You Measure It: Reactivity of Response Scales Measuring Predecisional Information Distortion in Medical Diagnosis

    Get PDF
    “Predecisional information distortion” occurs when decision makers evaluate new information in a way that is biased towards their leading option. The phenomenon is well established, as is the method typically used to measure it, termed “stepwise evolution of preference” (SEP). An inadequacy of this method has recently come to the fore: it measures distortion as the total advantage afforded a leading option over its competitor, and therefore it cannot differentiate between distortion to strengthen a leading option (“proleader” distortion) and distortion to weaken a trailing option (“antitrailer” distortion). To address this, recent research introduced new response scales to SEP. We explore whether and how these new response scales might influence the very proleader and antitrailer processes that they were designed to capture (“reactivity”). We used the SEP method with concurrent verbal reporting: fifty family physicians verbalized their thoughts as they evaluated patient symptoms and signs (“cues”) in relation to two competing diagnostic hypotheses. Twenty-five physicians evaluated each cue using the response scale traditional to SEP (a single response scale, returning a single measure of distortion); the other twenty-five did so using the response scales introduced in recent studies (two separate response scales, returning two separate measures of distortion: proleader and antitrailer). We measured proleader and antitrailer processes in verbalizations, and compared verbalizations in the single-scale and separate-scales groups. Response scales did not appear to affect proleader processes: the two groups of physicians were equally likely to bolster their leading diagnosis verbally. Response scales did, however, appear to affect antitrailer processes: the two groups denigrated their trailing diagnosis verbally to differing degrees. Our findings suggest that the response scales used to measure information distortion might influence its constituent processes, limiting their generalizability across and beyond experimental studies

    Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer

    Get PDF
    Background: EGFR-positive Non-small Cell Lung Cancer (NSCLC) is a dynamic entity and tumor progression and resistance to tyrosine kinase inhibitors (TKIs) arise from the accumulation, over time and across different disease sites, of subclonal genetic mutations. For instance, the occurrence of EGFR T790M is associated with resistance to gefitinib, erlotinib, and afatinib, while EGFR C797S causes osimertinib to lose activity. Sensitive technologies as radiomics and liquid biopsy have great potential to monitor tumor heterogeneity since they are both minimally invasive, easy to perform, and can be repeated over patient’s follow-up, enabling the extraction of valuable information. Yet, to date, there are no reported cases associating liquid biopsy and radiomics during treatment. Case presentation: In this case series, seven patients with metastatic EGFR-positive NSCLC have been monitored during target therapy. Plasma-derived cell free DNA (cfDNA) was analyzed by a digital droplet PCR (ddPCR), while radiomic analyses were performed using the validated LifeX® software on computed tomography (CT)-images. The dynamics of EGFR mutations in cfDNA was compared with that of radiomic features. Then, for each EGFR mutation, a radiomic signature was defines as the sum of the most predictive features, weighted by their corresponding regression coefficients for the least absolute shrinkage and selection operator (LASSO) model. The receiver operating characteristic (ROC) curves were computed to estimate their diagnostic performance. The signatures achieved promising performance on predicting the presence of EGFR mutations (R2 = 0.447, p <0.001 EGFR activating mutations R2 = 0.301, p = 0.003 for T790M; and R2 = 0.354, p = 0.001 for activating plus resistance mutations), confirmed by ROC analysis. Conclusion: To our knowledge, these are the first cases to highlight a potentially promising strategy to detect clonal heterogeneity and ultimately identify patients at risk of progression during treatment. Together, radiomics and liquid biopsy could detect the appearance of new mutations and therefore suggest new therapeutic management
    corecore