150 research outputs found

    Search mechanism of a stream grazer in patchy environments: the role of food abundance

    Full text link
    The search behavior of the grazing stream insect Baetis tricaudatus (Ephemeroptera: Baetidae) was examined in field and laboratory experiments. Regardless of food abundance in experimental habitats, nymphs spent significantly more time in food patches than predicted if they had moved randomly with respect to patches. A significant reduction in movement rate within patches relative to movement rate between patches largely accounted for these results. The movement pattern within patches was highly systematic and in agreement with predictions of optimal foraging theory since food was uniformly distributed within patches. Between-patch search movements were affected by food abundance in the most recently grazed patch. Search intensity after departure from a patch was positively related to food abundance in the patch while movement rate after patch departure was inversely related to patch food level. These effects produced between-patch movement patterns that were suboptimal in the experimental habitats because they resulted in revisitation of previously depleted patches. However, differences between experimental and natural habitats in the spatial occurrence of patch types suggest that Baetis between-patch search behavior may be adaptive in natural habitats.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47752/1/442_2004_Article_BF00379015.pd

    Metabolic, hygric and ventilatory physiology of a hypermetabolic marsupial, the honey possum (Tarsipes rostratus)

    Get PDF
    The honey possum is the only non-volant mammal to feed exclusively on a diet of nectar and pollen. Like other mammalian and avian nectarivores, previous studies indicated that the honey possum's basal metabolic rate was higher than predicted for a marsupial of equivalent body mass. However, these early measurements have been questioned. We re-examined the basal metabolic rate (2.52 +/- A 0.222 ml O(2) g(-1) h(-1)) of the honey possum and confirm that it is indeed higher (162%) than predicted for other marsupials both before and after accounting for phylogenetic history. This, together with its small body mass (5.4 +/- A 0.14 g; 1.3% of that predicted by phylogeny) may be attributed to its nectarivorous diet and mesic distribution. Its high-basal metabolic rate is associated with a high-standard body temperature (36.6 +/- A 0.48A degrees C) and oxygen extraction (19.4%), but interestingly the honey possum has a high point of relative water economy (17.0A degrees C) and its standard evaporative water loss (4.33 +/- A 0.394 mg H(2)O g(-1) h(-1)) is not elevated above that of other marsupials, despite its mesic habitat and high dietary water intake.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector

    Get PDF
    The leafhopper Scaphoideus titanus is the vector of a major phytoplasma grapevine disease, Flavescence dorée. The vector’s distribution is in Eastern and Northern Europe, and its population dynamics varies as a function of vineyard latitude. We tested the hypothesis that hatching dynamics are cued by cold temperatures observed in winter. We exposed eggs from a natural population to simulated “cold” and “mild” winters and varied the exposure time at 5 °C from 0 to 63 days. We show that temperature cooling mainly affected the onset of hatching and is negatively correlated to the cold time exposure. The majority of hatchings occurred more quickly in cold rather than in mild winter simulated conditions, but there was no significant difference between the duration of hatching of eggs whatever the cold time exposure. In agreement with the Northern American origin of the vector, the diapause termination and thus the timing regulation of egg hatching require cold winters

    A herbivore tag-and-trace system reveals contact- and density-dependent repellence of a root toxin

    Get PDF
    Foraging behavior of root feeding organisms strongly affects plant-environment-interactions and ecosystem processes. However, the impact of plant chemistry on root herbivore movement in the soil is poorly understood. Here, we apply a simple technique to trace the movement of soil-dwelling insects in their habitats without disturbing or restricting their interactions with host plants. We tagged the root feeding larvae of Melolontha melolontha with a copper ring and repeatedly located their position in relation to their preferred host plant, Taraxacum officinale, using a commercial metal detector. This method was validated and used to study the influence of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) on the foraging of M. melolontha. TA-G is stored in the latex of T. officinale and protects the roots from herbivory. Using behavioral arenas with TA-G deficient and control plants, we tested the impact of physical root access and plant distance on the effect of TA-G on M. melolontha. The larvae preferred TA-G deficient plants to control plants, but only when physical root contact was possible and the plants were separated by 5 cm. Melolontha melolontha showed no preference for TA-G deficient plants when the plants were grown 15 cm apart, which may indicate a trade-off between the cost of movement and the benefit of consuming less toxic food. We demonstrate that M. melolontha integrates host plant quality and distance into its foraging patterns and suggest that plant chemistry affects root herbivore behavior in a plant-density dependent manner. © 2017, Springer Science+Business Media New York

    Museum and herbarium collections for biodiversity research in Angola

    Get PDF
    The importance of museum and herbarium collections is especially great in biodiverse countries such as Angola, an importance as great as the challenges facing the effective and sustained management of such facilities. The interface that Angola represents between tropical humid climates and semi-desert and desert regions creates conditions for diverse habitats with many rare and endemic species. Museum and herbarium collections are essential foundations for scientific studies, providing references for identifying the components of this diversity, as well as serving as repositories of material for future study. In this review we summarise the history and current status of museum and herbarium collections in Angola and of information on the specimens from Angola in foreign collections. Finally, we provide examples of the uses of museum and herbarium collections, as well as a roadmap towards strengthening the role of collections in biodiversity knowledge generationinfo:eu-repo/semantics/publishedVersio

    Tissue microarray analysis reveals a tight correlation between protein expression pattern and progression of esophageal squamous cell carcinoma

    Get PDF
    BACKGROUND: The development of esophageal squamous cell carcinoma (ESCC) progresses a multistage process, collectively known as precursor lesions, also called dysplasia (DYS) and carcinoma in situ (CIS), subsequent invasive lesions and final metastasis. In this study, we are interested in investigating the expression of a variety of functional classes of proteins in ESCC and its precursor lesions and characterizing the correlation of these proteins with ESCC malignant progression. METHODS: Fas, FADD, caspase 8, CDC25B, fascin, CK14, CK4, annexin I, laminin-5γ2 and SPARC were analyzed using immunohistochemistry on tissue microarray containing 205 ESCC and 173 adjacent precursor lesions as well as corresponding normal mucosa. To confirm the immunohistochemical results, three proteins, fascin, CK14 and laminin-5γ2, which were overexpressed in ESCC on tissue microarray, were detected in 12 ESCC cell lines by Western blot assay. RESULTS: In ESCC and its precursor lesions, FADD, CDC25B, fascin, CK14, laminin-5γ2 and SPARC were overexpressed, while Fas, caspase 8, CK4 and annexin I were underexpressed. The abnormalities of these proteins could be classified into different groups in relation to the stages of ESCC development. They were "early" corresponding to mild and moderate DYS with overexpression of fascin, FADD and CDC25B and underexpression of Fas, caspase 8, CK4 and annexin I, "intermediate" to severe DYS and CIS with overexpression of FADD and CK14, and "late" to invasive lesions (ESCC) and to advanced pTNM stage ESCC lesions with overexpression of CK14, laminin-5γ2 and SPARC. CONCLUSION: Analyzing the protein expression patterns of Fas, FADD, caspase 8, CDC25B, fascin, CK14, CK4, annexin I, laminin-5γ2 and SPARC would be valuable to develop rational strategies for early detection of lesions at risk in advance as well as for prevention and treatment of ESCC

    Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau

    Get PDF
    Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts
    corecore