82 research outputs found

    Analogues of Kahan's method for higher order equations of higher degree

    Get PDF
    Kahan introduced an explicit method of discretization for systems of first order differential equations with nonlinearities of degree at most two (quadratic vector fields). Kahan's method has attracted much interest due to the fact that it preserves many of the geometrical properties of the original continuous system. In particular, a large number of Hamiltonian systems of quadratic vector fields are known for which their Kahan discretization is a discrete integrable system. In this note, we introduce a special class of explicit order-preserving discretization schemes that are appropriate for certain systems of ordinary differential equations of higher order and higher degree

    Multiplicity of periodic solutions for systems of weakly coupled parametrized second order differential equations

    Get PDF
    We prove a multiplicity result of periodic solutions for a system of second order differential equations having asymmetric nonlinearities. The proof is based on a recent generalization of the Poincar\ue9\u2013Birkhoff fixed point theorem provided by Fonda and Ure\uf1a

    A fitted numerical method for singularly perturbed parabolic reaction-diffusion problems

    Get PDF
    This paper treats a time-dependent singularly perturbed reaction-diffusion problem. We semidiscretize the problem in time by means of the classical backward Euler method. We develop a fitted operator finite difference method (FOFDM) to solve the resulting set of linear problems (one at each time level). We prove that the underlying fitted operator satisfies the maximum principle. This result is then used in the error analysis of the FOFDM. The method is shown to be first order convergent in time and second order convergent in space, uniformly with respect to the perturbation parameter. We test the method on several numerical examples to confirm our theoretical findings.Web of Scienc
    corecore