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Abstract
In this paper, the idea of nonstandard finite difference discretization is employed to
develop two variational integrators for the nonlinear Schrödinger equation with
variable coefficients. These integrators are naturally multi-symplectic, and their
multi-symplectic structures are presented by the multi-symplectic form formulas.
Local truncation errors and convergences of the integrators are briefly discussed. The
effectiveness and efficiency of the proposed schemes, such as the convergence order,
numerical stability, and the capability in preserving the norm conservation, are
verified in the numerical experiments.
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1 Introduction
The nonlinear Schrödinger equation (NLSE) [, ]

iut + uxx +V ′(|u|)u = ,

has wide applications in many areas such as quantum mechanics, nonlinear optics, and
plasma physics, etc. Extensive efforts have been devoted to studying the equation theo-
retically and numerically due to its broad and important applications. Various numerical
methods for the nonlinear Schrödinger equation [–] such as finite elementmethods [],
finite difference methods [], spectral method [], etc. have been developed. Among these
numerical methods of different categories, the multi-symplectic method has attracted
special attention for its better numerical stability for long-time computations and perfect
performance in preserving themulti-symplecticity of NLS equations, which is an intrinsic
conservative property of the Schrödinger equations.
In this paper, we consider the nonlinear Schrödinger equation with variable coefficients

iut + α(t)uxx + β(t)|u|u = , ()

where i =
√
–, α(t) and β(t) are integrable real functions in t, and u(x, t) is a scalar field

function with two independent variables labeled by x and t.
The nonlinear Schrödinger equation () can be reformulated as a multi-symplectic

Hamiltonian system []. Hong et al. [, ] proposed a numerical scheme for the NLSE
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with variable coefficients () by means of Preissman integrator []. For this Preissman in-
tegrator, they derived a discrete multi-symplectic structure, namedmulti-symplectic con-
servation law []. Also, the discrete normal conservation law and a global energy transit
formula in temporal direction were shown in their paper.
It is a classical way to derive multi-symplectic numerical schemes from the Hamiltonian

point of view [, , ]. After applying a numerical discretization to Hamilton’s equation
[–], however, weneed to rederive the discretemulti-symplectic conservation law since
it is unclear what is geometrically conserved by this discretization. On this aspect, another
classical way, i.e., deriving the multi-symplectic numerical schemes from the Lagrangian
viewpoint and variational principle, has more advantages since it leads in a natural way to
multi-symplectic integrators, and the discrete multi-symplectic structures are obtained
at the same time. Based on this Lagrangian viewpoint, Chen et al. [–] have elabo-
rately studied the variational multi-symplectic integrators for the nonlinear Schrödinger
equation. By the discrete variational principle with the discrete Lagrangian function, the
discrete variational integrator is derived, and the corresponding multi-symplectic struc-
ture, i.e., themulti-symplectic form formula byMarsden [, ], is also obtained from the
variational principle. In this work, we follow this Lagrangian viewpoint to study themulti-
symplectic methods for the nonlinear Schrödinger equation with variable coefficients ().
In this process, the discrete Lagrangian function needs to be defined for the discrete

variational principle. The Lagrangian function can be discretized by using finite difference
methods. In our paper, we use the nonstandard finite difference methods rather than the
classical finite difference methods to approximate the Lagrangian function. The nonstan-
dard finite difference methods developed by Mickens [–] have better performances
than the classical ones in terms of numerical stability, and they can be constructed flexibly
to preserve some important properties and conservation laws of the original models. The
rules of designing nonstandard finite difference schemes are listed in Section .
Combining the ideas of discrete variational integrators and the nonstandard finite dif-

ference methods is our starting point to study the nonlinear Schrödinger equation with
variable coefficients (), which can be reformulated as the following Euler-Lagrange equa-
tion:

∂L
∂u

=
d
dt

∂L
∂ut

+
d
dx

∂L
∂ux

, ()

with the Lagrangian function

L(u,ut ,ux) =


α(t)uxūx +



i(uūt – ūut) –




β(t)(uū), ()

where ū and ūx are the conjugates of u and ux, respectively.
The rest of the paper is organized as follows. In Section , we give some brief and neces-

sary introductions to discrete variational integrators, the corresponding multi-symplectic
form formulas, and the rules of nonstandard finite difference methods. In Section , with
the triangle discretization and square discretization, we derive two discrete variational
integrators for the NLS equation with variable coefficients () based on nonstandard fi-
nite difference methods. The discrete multi-symplectic structures are presented bymulti-
symplectic form formulas. Local truncation errors of the developed integrators are dis-
cussed, and the convergence orders are shown in error tables in the numerical experiment
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section. Section  is devoted to showing the numerical performances of the developed
nonstandard finite difference variational integrators. It also shows that our methods have
a good performance in preserving the norm conservation law.

2 Discrete variational integrators and nonstandard finite differencemethods
In this section,we first introduce the concepts of discrete variational integrators, the corre-
spondingmultisymplectic structures, and the rules of nonstandard finite differencemeth-
ods.

2.1 Discrete variational integrators andmulti-symplectic form formulas
Assume that we have a regular quadrangular mesh in the base space, with mesh lengths
�x and �t. The nodes in this mesh are denoted by (j,k) ∈ Z × Z, corresponding to the
points (xj, tk) := (j�x,k�t) in R

. We denote the value of the field u at the node (j,k) by ukj .
When we consider the triangle discretization, we denote a triangle at (j,k) with ordered
triple ((j,k), (j+,k), (j,k +)) by �jk . Define X� to be the set of all such triangles. Then the
discrete jet bundle [, ] is defined as follows:

J�Y :=
{(
ukj ,u

k
j+,u

k+
j

) ∈R
 :

(
(j,k), (j + ,k), (j,k + )

) ∈ X�
}
,

which equals X� ×R
.

Let us posit a discrete Lagrangian Ld : J�Y →R. Given a triangle�jk , define the function
Ld by Ld(ukj ,ukj+,uk+j ) which is a discrete version of the Lagrangian density []. Then the
action functional can be defined as

S = · · · + Ld
(
ukj ,u

k
j+,u

k+
j

)
+ Ld

(
ukj–,u

k
j ,u

k+
j–

)
+ Ld

(
uk–j ,uk–j+ ,u

k
j
)
+ · · · .

By the discrete variational principle [], we obtain the discrete Euler-Lagrange equation
by keeping the values of the field on the boundary fixed and taking variations with respect
to ukj ,

DLd
(
ukj ,u

k
j+,u

k+
j

)
+DLd

(
ukj–,u

k
j ,u

k+
j–

)
+DLd

(
uk–j ,uk–j+ ,u

k
j
)
= .

The discrete Euler-Lagrange equation is the so-called discrete variational integrator.
Meanwhile, the discrete multi-symplectic structure is also generated [, ] in the vari-
ational principle.
By Hamilton’s principle [, ], the discrete multi-symplectic structure, which is pre-

served by the discrete variational integrator, is described by Poincaré-Cartan forms in a
differential geometric language. In their paper [], Marsden et al. showed how to ob-
tain this structure directly from the variational principle on the Lagrangian side. They
defined the structure as the multi-symplectic form formula and demonstrated that it was
conserved by the discrete variational integrator in their paper.

Lemma . If u is a solution of the discrete Euler-Lagrangian equation, and V ,W are first
variations of u, then the following discrete multi-symplectic form formula holds:

∑
�;�∩∂U �=

( ∑
l:�l∈∂U

[(
ju

) ∗ (
ıjV ıjW�l

L
)]
(�)

)
= . ()
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The details of this conclusion can be found in papers [, ]. This conclusion states
that the discrete variational principles produce the discrete variational integrators, and
that the multi-symplecticity of these variational integrators is presented by the discrete
multi-symplectic form formula ().
Vankerschaver et al. [] revisited the multi-symplectic form formula in the work [].

They showed that it can be obtained from the boundary Lagrangian which they defined
in their paper. An easier way was presented to derive the discrete multi-symplectic form
formula from the discrete variational principle, using the notations of Poincaré-Cartan
forms. In this paper, we follow the same derivation for the discrete multi-symplectic form
formulas to derive our discrete variational integrators.
When we use the discrete variational principle, we need to make an approximation of

the Lagrangian. Here we employ nonstandard finite difference methods, instead of the
standard finite difference, to approximate the Lagrangian function and derive the corre-
sponding discrete variational integrators as well.

2.2 The nonstandard finite difference methods
The nonstandard finite difference schemes developed byMickens et al. [–] were pro-
posed to compensate the weaknesses which may be found in standard finite difference
methods, for example, numerical instabilities. Regarding the positivity, boundedness, and
monotonicity of solutions, nonstandard finite difference schemes also have a better perfor-
mance than standard finite difference ones. Because it is more flexible in its construction,
a nonstandard finite difference scheme can more easily preserve certain properties and
structures obeyed by the original equations and can have better dynamical consistency
for dynamical problems.
These advantages of nonstandard finite difference methods have been shown in many

numerical applications. González-Parra et al. [, ] developed some nonstandard finite
difference methods to preserve the positivity condition and population conservation law
of biologicalmodels. Jordan [] andMalek [] constructed nonstandard finite difference
schemes for heat transfer problems. For symplectic systems, Mickens [] derived a non-
standard finite difference variational integrator for symplectic ODEs. Recently, Ma et al.
[] developed a nonstandard finite difference scheme for stochastic differential equations
with additive noises.
The initial foundation of nonstandard finite difference methods came from exact finite

difference schemes []. After generalizing these results, Mickens formulated the follow-
ing three basic rules [–] in constructing nonstandard finite difference schemes.
. The orders of discrete derivatives should be equal to the orders of corresponding

derivatives appearing in the differential equations.
Note: If the orders of discrete derivatives are larger than those occurring in

differential equations, then numerical instabilities will in general occur.
. Discrete representations for derivatives, in general, have nontrivial denominator

functions.
Note: For example, the discrete first-derivative is generally represented by

du
dt

→ ui+ – ϕ(�t)ui
φ(�t)

,

http://www.advancesindifferenceequations.com/content/2013/1/12
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where the numerator functions ϕ(�t) and the denominator functions φ(�t) satisfy

ϕ(�t) =  +O
(
(�t)

)
, φ(�t) = �t +O

(
(�t)

)
.

. Both linear and nonlinear terms should be represented by nonlocal discrete
representations on the discrete computational lattice.
Note: For example,

u→ ui – ui+,

u → uiui+,

u →
(
ui– + ui + ui+



)
ui,

u → ui – ui ui+,

u → ui–uiui+.

In our paper, we combine the advantages of nonstandard finite difference methods and
discrete variational principles to construct multi-symplectic numerical schemes for the
nonlinear Schrödinger equation with variable coefficients (). Their multi-symplecticities
are presented by discrete multi-symplectic form formulas respectively.

3 Nonstandard finite difference variational integrators for the nonlinear
Schrödinger equation with variable coefficients

We consider the nonlinear Schrödinger equation with variable coefficients (),

iut + α(t)uxx + β(t)|u|u = ,

where u(x, t) is a scalar field function with two independent variables labeled by x and t
and α(t) and β(t) are integrable real functions in t. We now use the triangle discretiza-
tion and the square discretization respectively to obtain the nonstandard finite difference
variational integrators.

3.1 Triangle discretization for the nonstandard finite difference variational
integrator

We consider the same regular quadrangular mesh in the base space defined in Section ..
The triangle �jk is the three-ordered triple ((j,k), (j + ,k), (j,k + )) at (j,k). Let X� be the
set of all such triangles. The discrete jet bundle [, ] is defined as follows:

J�Y :=
{(
ukj ,u

k
j+,u

k+
j

) ∈R
 :

(
(j,k), (j + ,k), (j,k + )

) ∈ X�
}
,

which is equal to X� ×R
.

Now, we use the nonstandard finite difference to define the discrete Lagrangian Ld on
J�Y , which is the discrete version of the Lagrangian density []. Here, for the nonlinear
Schrödinger equation () with the Lagrangian

L(u,ut ,ux) =


α(t)uxūx +



i(uūt – ūut) –




β(t)(uū),

http://www.advancesindifferenceequations.com/content/2013/1/12
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the discrete Lagrangian is defined as

Ld
(
ukj ,u

k
j+,u

k+
j

)
=



�t�x

(


αk+ 



ukj+ – ukj
ψ(�x)

ūkj+ – ūkj
ψ(�x)

+


i
(ukj + ukj+ + uk+j


ūk+j – ūkj
φ(�t)

–
ūkj + ūkj+ + ūk+j


uk+j – ukj
φ(�t)

)

–



βk+ 


(∣∣ukj ∣∣∣∣ukj+∣∣ + ∣∣ukj+∣∣∣∣uk+j
∣∣ + ∣∣uk+j

∣∣∣∣ukj ∣∣)
)
, ()

where αk+ 

= α(tk+ 


), βk+ 


= β(tk+ 


),

φ(�t) = �t +O
(
(�t)

)
, and ψ(�x) = �x +O

(
(�x)

)
. ()

We have obeyed the rules of constructing nonstandard finite difference schemes in
Mickens’ papers [–] in the following ways. In the triangle �jk with three points
((j,k), (j + ,k), (j,k + )):
. The discrete first-derivative is represented by

du
dt

→ uk+j – ukj
φ(�t)

,
du
dx

→ ukj+ – ukj
ψ(�x)

,

where denominator functions φ(�t), ψ(�x) [, ] satisfy the conditions

φ(�t) = �t +O
(
(�t)

)
, ψ(�x) = �x +O

(
(�x)

)
.

. Nonlocal representation on the discrete computational lattice is given by

u → ukj + ukj+ + uk+j


,

and

(uū) → ukj ūkj ukj+ūkj+ + ukj+ūkj+uk+j ūk+j + uk+j ūk+j ukj ūkj


=
|ukj ||ukj+| + |ukj+||uk+j | + |uk+j ||ukj |


.

By discrete Hamilton’s principle [, ], we have the discrete Euler-Lagrangian equa-
tion

DLd
(
ukj ,u

k
j+,u

k+
j

)
+DLd

(
ukj–,u

k
j ,u

k+
j–

)
+DLd

(
uk–j ,uk–j+ ,u

k
j
)
= , ()

where Ld(ukj–,ukj ,uk+j– ) and Ld(uk–j ,uk–j+ ,ukj ) are defined similarly to () by

Ld
(
ukj–,u

k
j ,u

k+
j–

)
=


�t�x

(


αk+ 



ukj – ukj–
ψ(�x)

ūkj – ūkj–
ψ(�x)

http://www.advancesindifferenceequations.com/content/2013/1/12
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+


i
(ukj– + ukj + uk+j–


ūk+j– – ūkj–

φ(�t)
–
ūkj– + ūkj + ūk+j–


uk+j– – ukj–

φ(�t)

)

–



βk+ 


(∣∣ukj–∣∣∣∣ukj ∣∣ + ∣∣ukj ∣∣∣∣uk+j–
∣∣ + ∣∣uk+j–

∣∣∣∣ukj–∣∣)
)
,

and

Ld
(
uk–j ,uk–j+ ,u

k
j
)
=



�t�x

(


αk– 



uk–j+ – uk–j

ψ(�x)
ūk–j+ – ūk–j

ψ(�x)

+


i
(uk–j + uk–j+ + ukj


ūkj – ūk–j

φ(�t)
–
ūk–j + ūk–j+ + ūkj


ukj – uk–j

φ(�t)

)

–



βk– 


(∣∣uk–j
∣∣∣∣uk–j+

∣∣ + ∣∣uk–j+
∣∣∣∣ukj ∣∣ + ∣∣ukj ∣∣∣∣uk–j

∣∣)).
Substituting Ld(ukj ,ukj+,uk+j ), Ld(ukj–,ukj ,uk+j– ), and Ld(uk–j ,uk–j+ ,ukj ) into above equation

(), we arrive at a nonstandard finite difference variational integrator. We rearrange it as
follows:

αk+ 


ukj+ – ukj + ukj–
ψ(�x)

+
i


(

uk+j – ukj
φ(�t)

+
uk+j– – ukj–

φ(�t)
+ 

ukj – uk–j

φ(�t)
+
ukj+ – uk–j+

φ(�t)

)

+



βk+ 

ukj

(∣∣ukj+∣∣ + ∣∣uk+j
∣∣ + ∣∣ukj–∣∣ + ∣∣uk+j–

∣∣)
+



βk– 

ukj

(∣∣uk–j+
∣∣ + ∣∣uk–j

∣∣) = . ()

This is a nonstandard finite difference variational integrator for the nonlinear Schrödinger
equation with variable coefficients ().
As we have mentioned in Section  and Lemma ., the advantages of deriving multi-

symplectic numerical schemes from the discrete variational principle are that they are nat-
urallymulti-symplectic, and the discretemulti-symplectic structures are also generated in
the variational principle. Now, it is meaningful to show the multi-symplectic structure of
this discrete variational integrator () which is based on the nonstandard finite difference
method.
Since we employ the triangle discretization here, we focus on three adjacent triangles

around ukj and denote their area byU . Following the idea used in [], the discrete bound-
ary Lagrangian is given by

L∂U (u∂U ) := ext
ukj

[
Ld

(
ukj ,u

k
j+,u

k+
j

)
+ Ld

(
ukj–,u

k
j ,u

k+
j–

)
+ Ld

(
uk–j ,uk–j+ ,u

k
j
)]
, ()

where

u∂U :=
(
ukj+,u

k+
j ,uk+j– ,u

k
j–,u

k–
j ,uk–j+

)
.

Taking exterior derivative twice on both sides and knowing that dL∂U ≡ , we have the
discrete multi-symplectic form formula of the following form []:

∑
n=

∑
l=;l �=n

�n
L
(
�(l)) = , ()

http://www.advancesindifferenceequations.com/content/2013/1/12
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where �n
L = –d
n

L (for n = , , ) and the discrete Poincaré-Cartan forms 

L, 


L, and 

L

are defined by



L
(
ukj ,u

k
j+,u

k+
j

)
:=DLd

(
ukj ,u

k
j+,u

k+
j

)
dukj .

Thus, for the nonlinear Schödinger equation with variable coefficients (), the multi-
symplectic form formula of the scheme (), based on the nonstandard finite difference
methods, can be obtained by

αk+ 




(dūkj+ ∧ dukj+ – dūkj ∧ dukj+ – dūkj ∧ dukj– + dūkj– ∧ duk–j

(�x)

)

+
αk– 





(dūk–j+ ∧ duk–j+ – dūk–j ∧ duk–j+ – dūk–j+ ∧ duk–j + dūk–j ∧ duk–j

(�x)

)

+
i


(
d
(
δt ūkj

) ∧ d
(
ukj+ + uk+j

)
+ d

(
δt ūkj–

) ∧ d
(
ukj– + uk+j–

)
+ d

(
δt ūk–j

) ∧ d
(
uk–j + uk–j+

))
+

i
�t

(
–d�jk ∧ duk+j + d�j–k ∧ d

(
uk+j – uk+j–

)
+ d�jk– ∧ duk–j

)
–




βk+ 


(∣∣ukj ∣∣ + ∣∣uk+j
∣∣)dūkj+ ∧ dukj+ –




βk+ 


(∣∣ukj+∣∣ + ∣∣ukj ∣∣)dūk+j ∧ duk+j

–



βk+ 


(∣∣ukj ∣∣ + ∣∣uk+j–
∣∣)dūkj– ∧ dukj– –




βk+ 


(∣∣ukj ∣∣ + ∣∣ukj–∣∣)dūk+j+ ∧ duk+j+

–



βk– 


(∣∣uk–j+
∣∣ + ∣∣ukj ∣∣)dūk–j ∧ duk–j

–



βk– 


(∣∣uk–j
∣∣ + ∣∣ukj ∣∣)dūk–j+ ∧ duk–j+ = , ()

where �jk = (ukj +ukj+ +uk+j )/, �j–k = (ukj– +ukj +uk+j– )/, and �jk– = (uk–j +uk–j+ +ukj )/.
Now, we arrive at the first conclusion of this paper.

Theorem. The nonstandard finite difference variational integrator () for the nonlinear
Schrödinger equation () is multi-symplectic, and its discrete multi-symplectic structure
is ().

We now analyze the truncation error of the integrator (). We choose ψ(�x) = �x and
φ(�t) = �t here. By the Taylor series expansion, we have

αk+ 


ukj+ – ukj + ukj–
(�x)

= αkukxxj +O
(
(�x)

)
+O(�t),

i


(

uk+j – ukj
φ(�t)

+
uk+j– – ukj–

φ(�t)
+ 

ukj – uk–j

φ(�t)
+
ukj+ – uk–j+

φ(�t)

)
= iuktj +O

(
(�t)

)
+O(�x),




βk+ 

ukj

(∣∣ukj+∣∣ + ∣∣uk+j
∣∣ + ∣∣ukj–∣∣ + ∣∣uk+j–

∣∣) + 


βk– 

ukj

(∣∣uk–j+
∣∣ + ∣∣uk–j

∣∣)
= βkukj

∣∣ukj ∣∣ +O(�x) +O(�t).

http://www.advancesindifferenceequations.com/content/2013/1/12
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Combining the above three equations, we can observe that the nonstandard finite differ-
ence variational integrator () has the truncation error O(�x +�t).

3.2 Square discretization for the nonstandard finite difference variational
integrator

In this case, we denote a square at (j,k) with ordered quaternion ((j,k), (j + ,k), (j + ,k +
), (j,k + )) by �jk , and define X� to be the set of all such squares. Then the discrete jet
bundle [, ] is defined as follows:

J�Y :=
{(
ukj ,u

k
j+,u

k+
j+ ,u

k+
j

) ∈R
 :

(
(j,k), (j + ,k), (j + ,k + ), (j,k + )

) ∈ X�
}
,

which is equal to X� ×R
.

According to the nonstandard finite difference method, the discrete Lagrangian Ld on
J�Y now is defined as follows:

Ld
(
ukj ,u

k
j+,u

k+
j+ ,u

k+
j

)

= �x�t
(


αk+ 



uk+



j+ – uk+



j

ψ(�x)
ūk+




j+ – ūk+



j

ψ(�x)

+
i


(
uk+




j+ 


ūk+
j+ 


– ūk

j+ 


φ(�t)
– ūk+




j+ 


uk+
j+ 


– uk

j+ 


φ(�t)

)

–



βk+ 


(
ukj ū

k
j u

k
j+ū

k
j+ + ukj+ū

k
j+u

k+
j+ ū

k+
j+

+ uk+j+ ū
k+
j+ u

k+
j ūk+j + uk+j ūk+j ukj ū

k
j
))

. ()

In this case, we have used the following rules of nonstandard finite difference methods.
In the square �jk :
. The discrete first-derivative is represented by

du
dt

→
uk+
j+ 


– uk

j+ 


φ(�t)
=
uk+j – ukj
φ(�t)

+
uk+j+ – ukj+
φ(�t)

,

du
dx

→ uk+



j+ – uk+



j

ψ(�x)
=
uk+j+ – uk+j

ψ(�x)
+
ukj+ – ukj
ψ(�x)

,

where

φ(�t) = �t +O
(
(�t)

)
, ψ(�x) = �x +O

(
(�x)

)
.

. Nonlocal representations for u and (uū) are approximated by

u → uk+



j+ 

=
ukj + ukj+ + uk+j+ + uk+j


,

(uū) → ukj ūkj ukj+ūkj+ + ukj+ūkj+uk+j+ ūk+j+ + uk+j+ ūk+j+ uk+j ūk+j + uk+j ūk+j+ ukj ūkj


.

http://www.advancesindifferenceequations.com/content/2013/1/12


Liao and Ding Advances in Difference Equations 2013, 2013:12 Page 10 of 22
http://www.advancesindifferenceequations.com/content/2013/1/12

Similarly, we give the definitions of Ld on the other three squares adjoint to ukj :

Ld
(
ukj–,u

k
j ,u

k+
j ,uk+j–

)

= �x�t
(


αk+ 



uk+



j – uk+



j–

�x
ūk+




j – ūk+



j–

�x

+
i


(
uk+




j– 


ūk+
j– 


– ūk

j– 


�t
– ūk+




j– 


uk+
j– 


– uk

j– 


�t

)

–



βk+ 


(
ukj–ū

k
j–u

k
j ū

k
j + ukj ū

k
j u

k+
j ūk+j + uk+j ūk+j uk+j– ū

k+
j– + uk+j– ū

k+
j– u

k
j–ū

k
j–

))
,

Ld
(
uk–j– ,u

k–
j ,ukj ,u

k
j–

)

= �x�t
(


αk– 



uk–



j – uk–



j–

ψ(�x)
ūk–




j – ūk–



j–

ψ(�x)

+
i


(
uk–




j– 


ūk
j– 


– ūk–

j– 


φ(�t)
– ūk–




j– 


uk
j– 


– uk–

j– 


φ(�t)

)

–



βk– 


(
uk–j– ū

k–
j– u

k–
j ūk–j + uk–j ūk–j ukj ū

k
j + ukj ū

k
j u

k
j–ū

k
j– + ukj–ū

k
j–u

k–
j– ū

k–
j–

))
,

and

Ld
(
uk–j ,uk–j+ ,u

k
j+,u

k
j
)

= �x�t
(


αk– 



uk–



j+ – uk–



j

ψ(�x)
ūk–




j+ – ūk–



j

ψ(�x)

+
i


(
uk–




j+ 


ūk
j+ 


– ūk–

j+ 


φ(�t)
– ūk–




j+ 


uk
j+ 


– uk–

j+ 


φ(�t)

)

–



βk– 


(
uk–j ūk–j uk–j+ ū

k–
j+ + uk–j+ ū

k–
j+ u

k
j+ū

k
j+ + ukj+ū

k
j+u

k
j ū

k
j + ukj ū

k
j u

k–
j ūk–j

))
.

From the discrete variational principle, taking the derivative of the action functional with
respect to ukj , we have the discrete Euler-Lagrangian equation in this square discretization
[, , ], which is defined by

DLd
(
ukj ,u

k
j+,u

k+
j+ ,u

k+
j

)
+DLd

(
ukj–,u

k
j ,u

k+
j ,uk+j–

)
+DLd

(
uk–j– ,u

k–
j ,ukj ,u

k
j–

)
+DLd

(
uk–j ,uk–j+ ,u

k
j+,u

k
j
)
= . ()

After substituting the four discrete Lagrangian Ld(ukj ,ukj+,uk+j+ ,uk+j ), Ld(ukj–,ukj ,uk+j ,
uk+j– ), Ld(uk–j– ,uk–j ,ukj ,ukj–), and Ld(uk–j ,uk–j+ ,ukj+,ukj ) into above equation (), we have

αk+ 


uk+



j+ – uk+



j + uk+



j–

ψ(�x)
+ αk– 



uk–



j+ – uk–



j + uk–



j–

ψ(�x)

+
i

φ(�t)
(
uk+j+ 


+ uk+j– 


– uk–j– 


– uk–j+ 



)
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+



βk+ 

ukj

(∣∣ukj+∣∣ + 
∣∣uk+j

∣∣ + ∣∣ukj–∣∣)
+



βk– 

ukj

(∣∣ukj+∣∣ + 
∣∣uk–j

∣∣ + ∣∣ukj–∣∣) = . ()

This scheme is multi-symplectic and symmetric with respect to (j+ ,k) and (j– ,k). Fol-
lowing the steps given in the above examples, we have the multi-symplectic form formula

αk+ 


�x
d
(
δxū

k+ 


j
) ∧ (

dukj+ + duk+j+ – duk+j
)

+
αk+ 



�x
d
(
δxū

k+ 


j–
) ∧ (

duk+j – duk+j– – dukj–
)

+
αk– 



�x
d
(
δxū

k– 


j–
) ∧ (

–duk–j– + duk–j – dukj–
)

+
αk– 



�x
d
(
δxū

k– 


j
) ∧ (

–duk–j + duk–j+ + dukj+
)

+
i


d
(
δt ūkj+ 



) ∧ (
dukj+ + duk+j+ + duk+j

)
+

i


d
(
δt ūkj– 



) ∧ (
duk+j + duk+j– + dukj–

)
+

i


d
(
δt ūk–j– 



) ∧ (
duk–j– + duk–j + dukj–

)
+

i


d
(
δtūk–j+ 



) ∧ (
duk–j + duk–j+ + dukj+

)
+

i
�t

dūk+



j+ 


∧ (
dukj+ – duk+j+ – duk+j

)
+

i
�t

dūk+



j– 


∧ (
–duk+j – duk+j– + dukj–

)
+

i
�t

dūk–



j– 


∧ (
duk–j– + duk–j – dukj–

)
+

i
�t

dūk–



j+ 


∧ (
duk–j + duk–j+ – dukj+

)

–
βk+ 




(∣∣ukj+∣∣ + ∣∣uk+j

∣∣)dūk+j+ ∧ duk+j+ –
βk+ 




(∣∣uk+j

∣∣ + ∣∣ukj–∣∣)dūk+j– ∧ duk+j–

–
βk– 




(∣∣uk–j

∣∣ + ∣∣ukj–∣∣)dūk–j– ∧ duk–j– –
βk– 




(∣∣uk–j

∣∣ + ∣∣ukj+∣∣)dūk–j+ ∧ duk–j+

–
(βk+ 




(∣∣ukj ∣∣ + ∣∣uk+j+

∣∣) + βk– 



(∣∣uk–j+

∣∣ + ∣∣ukj ∣∣)
)
dūkj+ ∧ dukj+

–
(βk+ 




(∣∣uk+j+

∣∣ + ∣∣ukj ∣∣) + βk+ 



(∣∣ukj ∣∣ + ∣∣uk+j–

∣∣))dūk+j ∧ duk+j

–
(βk+ 




(∣∣ukj ∣∣ + ∣∣uk+j–

∣∣) + βk– 



(∣∣ukj ∣∣ + ∣∣uk–j–

∣∣))dūkj– ∧ dukj–

–
(βk+ 




(∣∣uk–j–

∣∣ + ∣∣ukj ∣∣) + βk– 



(∣∣uk–j+

∣∣ + ∣∣ukj ∣∣)
)
dūk–j ∧ duk–j = . ()

Now, we summarize our conclusion as follows.

Theorem . The nonstandard finite difference variational integrator () for the nonlin-
ear Schrödinger equation with variable coefficients () is multi-symplectic, and its discrete
multi-symplectic form formula is shown by ().

Now, we discuss the truncation error for the nonstandard finite difference variational
integrator (). Here, we choose ψ(�x) = �x and φ(�t) = �t. By the Taylor series expan-
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sion, we have




(
αk+ 



uk+



j+ – uk+



j + uk+



j–

(�x)
+ αk– 



uk–



j+ – uk–



j + uk–



j–

(�x)

)

= αkukxxj +O
(
(�x) + (�t)

)
,

i
�t

(
uk+j+ 


+ uk+j– 


– uk–j– 


– uk–j+ 



)
= uktj +O

(
(�x) + (�t)

)
,




(



βk+ 

ukj

(∣∣ukj+∣∣ + 
∣∣uk+j

∣∣ + ∣∣ukj–∣∣) + 


βk– 

ukj

(∣∣ukj+∣∣ + 
∣∣uk–j

∣∣ + ∣∣ukj–∣∣)
)

= βk
∣∣ukj ∣∣ukj +O

(
(�x) + (�t)

)
.

From the above equations, we can readily observe that the nonstandard finite difference
variational integrator () has a truncation error O((�x) + (�t)). To verify that the in-
tegrator has anticipated convergence accuracy, we investigate the numerical convergence
order in our numerical experiments. See Section .

4 Numerical simulations
In this section, we report the performance of the nonstandard finite difference variational
integrator () for solving the nonlinear Schrödinger equation with variable coefficients
(). The nonstandard finite difference variational integrator () is an implicit nine-points
stencil.We just choose the denominator functions φ(�t) = �t andψ(�x) =�x here. Con-
sider the following two sets of variable coefficients and initial conditions:

iut + αμ(t)uxx + βμ(t)|u|u = ,

u(x, ) = vμ(x), μ = , ,
()

where

α(t) =


cos(t), β(t) =

cos(t)
sin(t) + 

, v(x) =
√

sech

(



)
exp

(
i(x – )



)
,

α(t) =


(
cos(t) +

√
 cos(

√
t)

)
, β(t) =

cos(t) +
√
 cos(

√
t)

sin(t) + sin(
√
t) + 

,

v(t) =
√

sech

(
x


)
exp

(
i(x – )



)
.

These two problems correspond to periodic and quasi-periodic solitary-waves.Whenμ =
, the problem has a periodic solitary-wave solution

up(x, t) = Pp(x, t)Pp(x, t)Pp(x, t),

where

Pp(x, t) =


(sin(t) + ) 
, Pp(x, t) = sech

(
x

sin(t) + 

)
,

Pp(x, t) = exp

(
i(x – )

(sin(t) + )

)
.
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When μ = , the problem has a quasi-periodic solitary-wave solution

uqp(x, t) = Pqp(x, t)Pqp(x, t)Pqp(x, t),

where

Pqp(x, t) =


(sin(t) + sin(
√
t) + ) 

, Pqp(x, t) = sech

(
x

sin(t) + sin(
√
t) + 

)
,

Pqp(x, t) = exp

(
i(x – )

(sin(t) + sin(
√
t) + )

)
.

We use the same boundary conditions in the above two problems, i.e.,

u(–, t) = u(, t) = .

4.1 Simulation results for the problem (16)
First, for the periodic problem μ = , we plot the waveform in Figure . One can observe
that the nonstandard finite difference variational integrator () displays the numerical
properties of the periodic solitary-wave clearly and precisely.
We define the l-error ek of the numerical solution at time step tk as

ek =
√

�x
∑
j

∣∣ukj – up(xj, tk)
∣∣.

In Figure , we show the l-error ek of variational integrator () for the problem μ = .

Figure 1 The waveforms of ()with μ = 1 by integrator (). The waveforms of the NLSE with variable
coefficients () (μ = 1) by the nonstandard finite difference variational integrator () with �t = 0.1 and
�x = 0.1.
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Figure 2 l2-error ek of integrator () for ()with μ = 1. Numerical l2-error ek of the nonstandard finite
difference variational integrator () for the NLSE with variable coefficients () (μ = 1), from t = 0 to t = 60
with �t = 0.1 and �x = 0.1.

Now, we use the variational integrator () to solve the nonlinear Schrödinger equation
() with μ = . Figure  depicts the waveforms of the numerical solution obtained by the
variational integrator (). Figure  displays the l-errors of the variational integrator ().

4.2 Accuracy and numerical stability
To investigate the numerical convergence of the proposed scheme (), we conduct a series
of numerical tests with varying mesh sizes. The l-errors at t = ., t = , and t = . are
listed in Table . The orders in the table are calculated with the formula [, ]

Order ≈ ln(Error(�x)/Error(�x))
ln(�x/�x)

.

Overall, it is clear that the error decreases as themesh size goes to zero, indicating the con-
vergence of our nonlinear integrator (). Moreover, the numerical orders clearly exhibit
second-order convergence when the mesh size decreases with fixing �t = .�x.
The numerical stability of the nonstandard finite difference variational integrator ()

is demonstrated in Figure . l-error curves are plotted with increasing time step sizes
�t = ., ., ., ., respectively. We can see that our method performs very well even
with large time steps and it is unrestricted by the CFL conditions []. The l-errors are
bounded without blowing up. Thus, the nonstandard finite difference variational integra-
tor (), based on an implicitly temporal discretization, is unconditionally stable from the
viewpoint of numerical simulations. In general, nonstandard finite difference methods
have better numerical stability than the standard finite difference method.
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Figure 3 The waveforms of ()with μ = 2 by integrator (). The waveforms of the NLSE with variable
coefficients () (μ = 2) computed with the nonstandard finite difference variational integrator () with
�t = 0.1 and �x = 0.1.

Figure 4 l2-error ek of integrator () for ()with μ = 2. Numerical l2-error ek of the nonstandard finite
difference variational integrator () for the NLSE with variable coefficients () (μ = 2), from t = 0 to t = 60
with �t = 0.1 and �x = 0.1.
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Table 1 l2-errors and convergence orders of integrator () for the problem μ = 1 with
�t = 0.1�x

Mesh size t = 1.5 t = 3 t = 3.5

�x = 0.2
Error 0.0734 0.0125 0.0307
Order - - -

�x = 0.1
Error 0.0203 0.0030 0.0075
Order 1.8543 2.0589 2.0333

�x = 0.05
Error 0.0051 7.3821e–4 0.0018
Order 1.9929 2.0229 2.0590

�x = 0.025
Error 0.0013 1.8495e–4 4.5060e–4
Order 1.9720 1.9969 1.9981

Figure 5 l2-error ek of integrator ()with increasing time step sizes. The l2-errors of integrator () for
the NLSE with variable coefficients () (μ = 1) with time step sizes �t = 0.1, 0.2, 0.4, 0.6, and �x = 0.05.

4.3 Norm conservation laws
We know that the nonlinear Schrödinger equation has the following global norm conser-
vation law:∫

R
|u| dx = constant.

The discrete version of this norm conservation law [] can be written as

Norm
k :=�x

∑
j

|ukj | = constant.

http://www.advancesindifferenceequations.com/content/2013/1/12
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Figure 6 Norm conservation performance of integrator () for ()μ = 1. Norm conservationNorm2
k of

the nonstandard finite difference variational integrator () for the NLSE with variable coefficients () (μ = 1),
from t = 0 to t = 60 with �t = 0.1 and �x = 0.1.

To show the performance of our integrator () on this aspect, we plot the norm con-
servation Norm

k in Figure  and Figure . We find that our method preserves the norm
conservation law pretty well with very small periodic oscillation. The norm is constant
within a percentage error of .% in Figure . For Figure , the norm is constant within a
percentage error of %.

4.4 Comparison with standard finite difference methods
A numerical test is made to compare the nonstandard finite difference method with the
standard finite differencemethod. For the nonlinear Schrödinger equation () withμ = ,
we have a standard finite difference scheme

i
uk+j – ukj

�t
+ αk+

uk+j+ – uk+j + uk+j–

(�x)
+ βj+

∣∣uk+j
∣∣uk+j = , ()

where the spatial and temporal derivatives are approximated by using the classical central
differencing and the implicit Euler method, respectively.
The l-error of () is plotted in Figure . Furthermore, the norm conservation Norm

k

is presented in Figure . From the two figures, it is easy to see that the standard finite
difference method does not perform as well as the nonstandard finite difference method
(). The normconservation law is totally lost by the standard finite difference scheme ().
The nonstandard finite difference method has better stability and better performance

on conservation laws. Actually, the well-known numerical method, the Crank-Nicolson

http://www.advancesindifferenceequations.com/content/2013/1/12
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Figure 7 Norm conservation performance of integrator () for ()μ = 2. Norm conservationNorm2
k of

the nonstandard finite difference variational integrator () for the NLSE with variable coefficients () (μ = 2),
from t = 0 to t = 60 with �t = 0.1 and �x = 0.1.

Figure 8 l2-error of the implicit Euler method () and the NSFD variational integrator (). l2-error of
the implicit Euler method () and the NSFD variational integrator () for the NLSE with variable coefficients
() (μ = 1). �t = 0.1 and �x = 0.1.
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Figure 9 Norm2
k of the implicit Euler method () and the NSFD variational integrator (). Norm2

k of
the implicit Euler method () and the NSFD variational integrator () for the NLSE with variable coefficients
() (μ = 1). �t = 0.1 and �x = 0.1.

scheme,

i
uk+j – ukj

�t
+ αk+ 



(ukj+ – ukj + ukj–) + (uk+j+ – uk+j + uk+j– )
(�x)

+



βk+ 


(∣∣ukj ∣∣ + ∣∣uk+j
∣∣)(ukj + uk+j

)
= ,

also has some flavor of the nonstandard finite difference method, i.e., discretizing
the equation at half time-grid points. The Crank-Nicolson scheme for the nonlinear
Schrödinger equations also preserves the conservation law very well []; however, it is
not multi-symplectic for the NLSE, which is a multi-symplectic PDE. We also compare
our method () with the Crank-Nicolson scheme here. From the l-errors shown in Fig-
ure , we find both of them work well. To compare these two approaches in terms of
computational efficiency, we perform a set of numerical tests with different spatial and
temporal mesh sizes. Figure  depicts the l-errors versus the computational time con-
sumed by each approach to achieve those errors. One can observe that our method is
competitive to the Crank-Nicolson method in this case. What is more, our method costs
less computational time to get error levels less than –.
In all, the numerical tests verify that the nonstandard finite difference variational in-

tegrator is capable of preserving characteristics of the original equations. It is accurate,
efficient, and suitable for solving the nonlinear Schrödinger equations with variable coef-
ficients ().
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Figure 10 l2-errors of the Crank-Nicolson scheme and the NSFD variational integrator (). l2-errors of
the Crank-Nicolson scheme and the NSFD variational integrator () for the NLSE with variable coefficients
() (μ = 1). �t = 0.1 and �x = 0.1.

Figure 11 The l2-errors as a function of the CPU time for the NSFD variational integrator (),
Crank-Nicolson scheme and implicit Euler method (). The l2-errors for the terminating time T = 5 as a
function of the CPU time for the NSFD variational integrator (), the Crank-Nicolson scheme and the implicit
Euler method () for the problem () (μ = 1).
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5 Conclusion
In this paper, we have considered the nonlinear Schrödinger equation with variable coeffi-
cients. We have derived two discrete variational integrators based on the nonstandard fi-
nite difference methods, and have presented the corresponding discrete multi-symplectic
structures via multi-symplectic form formulas. We have shown that it is feasible to com-
bine the idea of discrete variational integrators and nonstandard finite differencemethods
to construct themulti-symplectic schemes for theNLS equation. The convergence and the
stability of our methods have been discussed. The numerical experiments have shown the
effectiveness and efficiency of these nonstandard finite difference variational integrators.
Some comparisons with standard finite difference schemes have been made to demon-
strate the features of the proposed integrators.
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