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Abstract
In this paper, a class of discrete SEIRS epidemic models with general nonlinear
incidence is investigated. Particularly, a discrete SEIRS epidemic model with standard
incidence is also considered. The positivity and boundedness of solutions with
positive initial conditions are obtained. It is shown that if the basic reproduction
numberR0 ≤ 1, then disease-free equilibrium is globally attractive, and ifR0 > 1,
then the disease is permanent. When the model degenerates into SEIR model, it is
proved that ifR0 > 1, then the model has a unique endemic equilibrium, which is
globally attractive. Furthermore, the numerical examples verify an important open
problem that whenR0 > 1, the endemic equilibrium of general SEIRS models is also
globally attractive.
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1 Introduction
As is well known, many infectious diseases possess a latent period, such as Hepatitis, HIV,
SARS, Ebola, MERS, etc. When a susceptible individual is infected at the beginning, the
disease incubates inside the susceptible for a period of time, then the susceptible becomes
an exposed individual before becoming infectious. For such infectious diseases, the result-
ing model is SEIR (susceptible S, exposed E, infectious I , removed R) epidemic type. The
study on SEIR-type epidemic dynamical models is a very important subject in the math-
ematical theory of epidemiology, and in the last two decades there have been a number
of researches on modeling, theoretical analysis, and applications. Continuous SEIR-type
epidemic models described by the differential equations have been widely studied. Many
important and interesting results can be found in [–] and the references therein.

As we all know, it is very difficult to accurately solve a nonlinear differential equa-
tion with a given initial condition. Therefore, for many practical requirements, such as
numerical calculation, it is often necessary to discretize a continuous model to obtain
the corresponding discrete model. At the present time, there are various discretization
methods to discretize a continuous model, including the standard methods, such as Euler
method, Runge-Kutta method, and some other standard finite difference schemes, and the
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nonstandard finite difference (NSFD) scheme, which is originally developed by Mickens
[–].

In recent years, discrete epidemic models have been widely studied. The basic and im-
portant research subjects for these models are the computing of the thresholds values and
basic reproduction numbers, the local and global stability of disease-free equilibrium and
the endemic equilibrium, the persistence, permanence, and extinction of the disease, and
bifurcations and chaos phenomena of the models when some parameters of the models
vary, and so on. Many important and interesting results can be found in [–] and the
references therein. Particularly, we see that in [, , , –, , ] discrete SI-type
epidemic models are investigated, and in [, , , , , ] discrete SIR-type epidemic
models are discussed.

However, we see that up to now there have been fewer research works on discrete SEI-
and SEIR-type epidemic models, where the disease has a latent period. Cao and Zhou
[] formulated and studied a discrete age-structured SEIT epidemic model, and as an ap-
plication, discussed the tuberculosis transmission in China. In [], the authors applied
Micken’s discretization method to obtain a discrete SEIR epidemic model. The positivity
of solutions and the existence and stability of equilibrium are discussed. The design of a
state observer for the model is tackled. Some sufficient conditions to ensure the asymp-
totic stability of the observer are provided in terms of a matrix inequality. In [], the
authors studied a discrete plant virus disease model with roguing and replanting, which is
derived from the continuous case by using the backward Euler method. The basic repro-
duction number R is obtained. It is showed that the disease-free equilibrium is globally
attractive if R ≤ , and otherwise, the disease is permanent if R > . In [, ], the au-
thors proposed a class of discrete SEIS epidemic models with bilinear incidence, which
is established from the corresponding continuous SEIS epidemic model by applying the
well-known backward difference scheme. The positivity of solutions and the permanence
of the model are established. Furthermore, using the Lyapunov function method, the au-
thors proved that if the basic reproduction number R ≤ , then the disease-free equilib-
rium is globally asymptotically stable, and if R > , then the endemic equilibrium exists
and is globally asymptotically stable.

Consider the following continuous SEIRS epidemic model with general nonlinear inci-
dence:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS
dt = � – f (S, E, I, R) – μS + σR,
dE
dt = f (S, E, I, R) – (μ + δ)E,
dI
dt = δE – (μ + γ )I,
dR
dt = γ I – (μ + σ )R.

()

Some particular cases for this model have been investigated in [, , ], where the basic
reproduction number is calculated, and the dynamical properties, such as the local and
global stability of disease-free equilibrium and endemic equilibrium and the extinction
and persistence of the disease are established. Motivated by this work, in this paper, we
propose the following discrete SEIRS epidemic model with general nonlinear incidence
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established by using the backward difference scheme to discretize model ():

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(n + ) – S(n) = � – f (X(n + )) – μS(n + ) + σR(n + ),
E(n + ) – E(n) = f (X(n + )) – (μ + δ)E(n + ),
I(n + ) – I(n) = δE(n + ) – (μ + γ )I(n + ),
R(n + ) – R(n) = γ I(n + ) – (μ + σ )R(n + ),

()

where X(n) = (S(n), E(n), I(n), R(n)).
Our purpose in this paper is to investigate the dynamical behaviors of model (). The

basic reproduction number R is defined. We will prove by using the linearization method
and Lyapunov function that if R ≤ , then disease-free equilibrium is globally attractive,
and as a result, the disease is also extinct, and by using the theory of persistence for dy-
namical systems that if R > , then the disease is permanent. Furthermore, when model
() degenerates into the particular case f (S, E, I, R) = f (S, E, I) and σ = , by constructing
the suitable discrete type Lyapunov function we also will prove that if R > , then model
() has a unique endemic equilibrium, which is globally attractive.

The organization of this paper is as follows. In Section , the model description and
some basic properties are given. Section  deals with the global attractivity of disease-free
equilibrium of model (). In Section , the criterion on the permanence of the disease for
model () is stated and proved. In Section , the criterion on the global attractivity of the
endemic equilibrium for model () in the particular case f (S, E, I, R) = f (S, E, I) and σ = 
is stated and proved. Furthermore, in Section , some numerical examples are provided
to illustrate the validity of main results obtained in this paper and verify the interesting
open problem given in Remark .. Lastly, a discussion is given in Section .

2 Basic properties
In model (), S(n), E(n), I(n), and R(n) denote the numbers of susceptible, exposed, infec-
tious, and recovered classes at nth generation, respectively, � is the recruitment rate of
the susceptible, μi (i = , , , ) are the death rates of susceptible, exposed, infectious, and
recovered individuals, respectively. Particularly, μ includes the natural death rate and the
disease-related death rate of the infectious class. δ is the translation rate from exposed to
infectious, γ is the recovery rate of the infectious individuals, and σ is the rate of los-
ing immunity of the recovered; σ >  indicates that the recovered individuals possess the
provisional immunity, and σ =  predicates that the recovered individuals acquire perma-
nent immunity. The incidence rate of the infectious is described by a nonlinear function
f (S, E, I, R).

In this paper, we always assume that the parameters �, μi (i = , , , ), δ, and γ are
positive constants, σ is a nonnegative constant, and μ ≤ min{μ,μ,μ}. We set

� =
{

(S, E, I, R, ) : S ≥ , E ≥ , I ≥ , R ≥ , S + E + I + R > 
}

.

For a nonlinear incidence f (S, I), we introduce the following assumption.

(H) f (S, E, I, R) is continuously differentiable with respect to (S, E, I, R) ∈ �, f (S, E, I, R) is
increasing with respect to S ≥  and decreasing with respect to E ≥  and R ≥ , and
f (S,E,I,R)

I is nonincreasing with respect to I > . Furthermore, f (, E, I, R) = f (S, E, , R) ≡
 and ∂f (S,,,)

∂I > , where S = �
μ

.
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Remark . When f (S, E, I, R) = β SqI
(+ωS)(+αIp) or f (S, E, I, R) = β SI

N , where N = S + E + I + R,
and β > , ω ≥ , α ≥ , q ≥ , and p ≥  are constants, (H) naturally holds. Furthermore,
when f (S, E, I, R) = βh(S)g(I), (H) degenerates into the following form:

(H∗) h(S) and g(I) are continuously differentiable with respect to S ≥  and I ≥ , respec-
tively, h(S) is increasing for S ≥ , and g(I)

I is nonincreasing for I > . Furthermore,
h() = g() =  and g ′() > .

The initial condition for model () is given by

S() > , E() > , I() > , R() ≥ . ()

We have the following result on the positivity and ultimate boundedness of solutions.

Theorem . Model () has a unique positive solution (S(n), E(n), I(n), R(n)) for all n ≥ 
with initial condition (), and this solution is ultimately bounded.

Proof We can prove this theorem by using an argument similar to that introduced in
[], Theorem .. In fact, we only need to prove by induction that, for any integer
n ≥ , if (S(n), E(n), I(n), R(n)) exists and S(n) > , E(n) > , I(n) > , and R(n) ≥ , then
(S(n + ), E(n + ), I(n + ), R(n + )) also exists, and S(n + ) > , E(n + ) > , I(n + ) > ,
and R(n + ) > .

From model () by calculating we can obtain

S(n + ) = a – bE(n + ), I(n + ) =


 + μ + γ

[
I(n) + δE(n + )

]
, ()

and

R(n + ) =


 + μ + σ

[

R(n) +
γ

 + μ + γ

(
I(n) + δE(n + )

)
]

, ()

where

a =


 + μ

(
N(n) + �

)
–

[
μ – μ

( + μ)( + μ + γ )
+


 + μ + γ

+
γ

( + μ + γ )( + μ + σ )
+

(μ – μ)γ
( + μ)( + μ + γ )( + μ + σ )

]

I(n)

–
[

μ – μ

( + μ)( + μ + σ )
+


 + μ + σ

]

R(n),

b =


 + μ

[

μ – μ +
(μ – μ)δ
 + μ + γ

+
(μ – μ)γ σ

( + μ + γ )( + μ + σ )

]

+  +
δ

 + μ + γ
+

γ δ

( + μ + γ )( + μ + σ )
,

and N(n) = S(n) + E(n) + I(n) + R(n). Since μ ≤ min{μ,μ,μ}, we obtain b >  and a >


+μ
[S(n) + E(n) + �] > .
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Let y = E(n + ). By the second equation of model () and by () and (), y satisfies the
equation

�(y) � y –


 + μ + δ

[
E(n) + f

(
a – by, y, u(y), v(y)

)]
= ,

where

u(y) =


 + μ + γ

(
I(n) + δy

)

and

v(y) =


 + μ + σ

[

R(n) +
γ

 + μ + γ

(
I(n) + δy

)
]

.

Let y = a
b . Since

�(y) = y –


 + μ + δ

[

E(n) +
f (a – by, y, u(y), v(y))

u(y)
u(y)

]

,

from (H) we obtain that �(y) is increasing with respect to y ∈ (, y). Then, we obtain

�() = –


 + μ + δ

[
E(n) + f

(
a, , u(), v()

)]
< 

and

�(y) = y –


 + μ + δ
E(n) > .

Therefore, �(y) =  has a unique positive solution ȳ ∈ (, y). This shows that E(n + )
exists and E(n + ) = ȳ > .

By (), when E(n + ) >  exists, then I(n + ) also exists, and I(n + ) > . By the fourth
equation of model () we further have that R(n + ) exists and R(n + ) > .

Let x = S(n + ). By the first equation of model () it follows that

�(x) � ( + μ)x + f
(
x, E(n + ), I(n + ), R(n + )

)
– σR(n + ) – S(n) – � = .

By (H), when E(n + ) >  exists, then �(x) is increasing for x ≥ . Since �() = –σR(n +
) – S(n) – � <  and limx→∞ �(x) = ∞, we obtain that �(x) =  has a unique positive
solution x̄. Therefore, S(n + ) exists, and S(n + ) = x̄ > .

From the previous discussions we finally obtain that (S(n + ), E(n + ), I(n + ),
R(n + )) exists and is positive. Therefore, solution (S(n), E(n), I(n), R(n)) uniquely exists
and is positive for all n > .

From model () we have

N(n + ) ≤ 
 + μ

[
N(n) + �

]
.

When N() ≤ S, where S = �
μ

, we have N(n) ≤ S for all n > . In a general way, for
any N() >  we can obtain lim supn→∞ N(n) ≤ S. Therefore, (S(n), E(n), I(n), R(n)) is ul-
timately bounded. This completes the proof. �
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Remark . From the previous discussion we see that the region

 =
{

(S, E, I, R) : S ≥ , E ≥ , I ≥ , R ≥ , S + E + I + R ≤ S
}

is a positive invariable set for model () and absorbs all nonnegative solutions of model
(). Therefore, we can assume in the rest of this paper that S(n) ≤ S, E(n) ≤ S, I(n) ≤ S,
and R(n) ≤ S for all n ≥ .

The basic reproduction number for model () is given by

R =
∂f
∂I (S, , , )δ

(μ + γ )(μ + δ)
.

Particularly, when f (S, E, I, R) = βh(S)g(I) and f (S, E, I, R) = β SI
N , R becomes of the follow-

ing forms, respectively,

R =
βh(S)g ′()δ

(μ + γ )(μ + δ)
, R =

βδ

(μ + γ )(μ + δ)
.

On the existence of equilibria of model (), we have the following result.

Theorem .
() If R ≤ , then model () has only a disease-free equilibrium P(S, , , ), where

S = �
μ

.
() If R > , then model () has a unique endemic equilibrium P∗(S∗, E∗, I∗, R∗), except

for P.

Proof Any equilibrium (S, E, I, R) of model () satisfies the equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� – f (S, E, I, R) – μS + σR = ,
f (S, E, I, R) – (μ + δ)E = ,
δE – (μ + γ )I = ,
γ I – (μ + σ )R = .

()

Hence, we have

E =
μ + γ

δ
I � E(I), R =

γ

μ + σ
I � R(I),

and

� – (μ + δ)E – μS + σR = � –
(μ + δ)(μ + γ )

δ
I – μS +

σγ

μ + σ
I = .

Thus,

S =

μ

[

� –
(μ + δ)(μ + γ )(μ + σ ) – δγ σ

δ(μ + σ )
I
]

� S(I).
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Let I∗ = �δ(μ+σ )
(μ+δ)(μ+γ )(μ+σ )–δγ σ

. Then I∗ > , S(I∗) = , and S(I) is decreasing for I ∈ [,∞).
From the second equation of () we have

f
(
S(I), E(I), I, R(I)

)
–

(μ + δ)(μ + γ )
δ

I = .

Define

�(I) =
f (S(I), E(I), I, R(I))

I
–

(μ + δ)(μ + γ )
δ

.

By (H), �(I) is decreasing for I > , �(I∗) = – (μ+δ)(μ+γ )
δ

< , and

lim
I→+

�(I) =
∂f (S, , , )

∂I
–

(μ + δ)(μ + γ )
δ

.

If R ≤ , then limI→+ �(I) ≤ . Hence, �(I) =  has no positive roots. This shows that
model () has only a disease-free equilibrium P.

If R > , then limI→+ �(I) > . Hence, �(I) =  has a unique positive root I∗. This
shows that model () has a unique endemic equilibrium P∗(S∗, E∗, I∗, R∗), where

S∗ =

μ

[

� –
(μ + δ)(μ + γ )(μ + σ ) – δγ σ

δ(μ + σ )
I∗

]

and

E∗ =
μ + γ

δ
I∗, R∗ =

γ

μ + σ
I∗.

This completes the proof. �

We have the following result on the local stability of the disease-free equilibrium and
endemic equilibrium.

Theorem . When R < , the disease-free equilibrium P of model () is locally asymp-
totically stable, and when R > , P is unstable.

Proof The linearization system of model () at equilibrium P is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+ = xn – ∂f
∂I (S, , , )zn+ – μxn+ + σun+,

yn+ = yn + ∂f
∂I (S, , , )zn+ – (μ + δ)yn+,

zn+ = zn + δyn+ – (μ + γ )zn+,
un+ = un + γ zn+ – (μ + σ )un+.

()

From the second and third equations of system () we have
(

yn+

zn+

)

= A–

(
yn

zn

)

, ()

where

A =

(
 + μ + δ – ∂f

∂I (S, , , )
–δ  + μ + γ

)

.
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SinceR < , we easily prove that two eigenvalues λi (i = , ) of the matrix A satisfy |λi| > .
Therefore, two eigenvalues ρi (i = , ) of the matrix A– satisfy |ρi| < .

From the first and fourth equations of system () we have

(
xn+

un+

)

= B–

(
xn

un

)

+ B–

(
– ∂f

∂I (S, , , )
γ

)

yn+,

where

B =

(
 + μ –δ

  + μ + σ

)

.

Obviously, the matrix B– has eigenvalues ρi (i = , ) satisfying |ρi| < . Therefore, equi-
librium (, , , ) of system () is asymptotically stable. Consequently, when R < , the
equilibrium P of model () is locally asymptotically stable.

When R > , we easily prove that two eigenvalues ρi (i = , ) of the matrix A– are real
numbers and |ρ| <  and |ρ| > . Hence, the equilibrium (, ) of system () is unstable.
This shows that the equilibrium P is unstable when R > . �

Remark . It is unfortunate that we do not establish the local asymptotic stability of en-
demic equilibrium P∗ of model (). In fact, the linearization system of model () at endemic
equilibrium P∗ is

⎛

⎜
⎜
⎜
⎝

xn+

yn+

zn+

un+

⎞

⎟
⎟
⎟
⎠

= C–

⎛

⎜
⎜
⎜
⎝

xn

yn

zn

un

⎞

⎟
⎟
⎟
⎠

,

where

C =

⎛

⎜
⎜
⎜
⎝

 + ∂f
∂S (S∗, E∗, I∗, R∗) + μ  ∂f

∂I (S∗, E∗, I∗, R∗) –σ

– ∂f
∂S (S∗, E∗, I∗, R∗)  + μ + δ – ∂f

∂I (S∗, E∗, I∗, R∗) 
 –δ  + μ + γ 
  –γ  + μ + σ

⎞

⎟
⎟
⎟
⎠

.

In order to obtain the local asymptotic stability of endemic equilibrium P∗, we only need
to prove that all eigenvalues λ of matrix C– satisfy |λ| < . However, it is a pity that here
we do not obtain this.

Therefore, when R > , whether the endemic equilibrium P∗ of model () also is locally
asymptotically stable still is an interesting open problem.

3 Global attractivity of disease-free equilibrium
In this section, we discuss the global attractivity of disease-free equilibrium of model ().
We have the following result.

Theorem . The disease-free equilibrium P of model () is globally attractive if and only
if R ≤ .
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Proof The necessity is obvious because when R > , model () has an endemic equilib-
rium P∗. Now, we prove the sufficiency. When R ≤ , we can choose a constant p > 
such that

δ

p
– (μ + δ) ≤ ,

∂f
∂I

(S, , , )p – (μ + γ ) ≤ . ()

Let (S(n), E(n), I(n), R(n)) be any positive solution of model (). Choosing the Lyapunov
function

V (n) = pE(n) + I(n),

we have


V (n) = V (n + ) – V (n)

= p
(
f
(
S(n + ), E(n + ), I(n + ), R(n + )

)
– (μ + δ)E(n + )

)

+
(
δE(n + ) – (μ + γ )I(n + )

)

< p
(

∂f (S, , , )
∂I

I(n + ) – (μ + δ)E(n + )
)

+
(
δE(n + ) – (μ + γ )I(n + )

)

=
[

p
∂f (S, , , )

∂I
– (μ + γ )

]

I(n + ) +
[

δ

p
– (μ + δ)

]

pE(n + ).

From () we have 
V (n) ≤ . It is clear that {(S, E, I, R) : 
V (n) = } ⊂ {(S, E, I, R) : I =
}. When I(n) ≡ , from the third equation of model () we have E(n) ≡ . From the
fourth equation of model () we further have limn→∞ R(n) = . From the first equation
of model () we also have limn→∞ S(n) = S. This shows that the maximal invariable set in
{(S, E, I, R) : 
V (n) = } is a disease-free equilibrium P.

Therefore, using the theorems of stability of difference equations (see Theorem . in
[]), we finally obtain that the disease-free equilibrium P of model () is globally attrac-
tive. This completes the proof. �

Remark . When f (S, E, I, R) = SI
N (standard incidence), by Theorem ., if R =

βδ

(μ+γ )(μ+δ) ≤ , then the disease-free equilibrium P in model () is globally attractive.

4 Permanence of disease
For model (), disease I(n) is said to be permanent if there exists constants M > m > 
such that for any solution (S(n), E(n), I(n), R(n)) of model () with initial condition (),
m ≤ lim infn→∞ I(n) ≤ lim supn→∞ I(n) ≤ M. We have the following result.

Theorem . Disease I(n) in model () is permanent if and only if R > .

Proof The necessity is obvious. In fact, if R ≤ , then by Theorem . the disease-free
equilibrium P is globally attractive.
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Now, we prove the sufficiency. When R > , we can choose constants p >  and ε > 
such that

δ

p
– (μ + δ) > ,

(
∂f
∂I

(S, , , ) – ε

)

p – (μ + γ ) > . ()

We will use the persistence theory of dynamical systems (see [], Section . in Chap-
ter ) to prove the theorem. Define the sets

X =
{

(S, E, I, R) : S > , E ≥ , I ≥ , R ≥ 
}

and

X =
{

(S, E, I, R) ∈ X : E > , I > 
}

, ∂X =
{

(S, E, I, R) ∈ X : EI = 
}

.

Let (S(n), E(n), I(n), R(n)) be the solution of model () with initial condition (S(), E(),
I(), R()) = (S, E, I, R). Define the set

M∂ =
{

(S, E, I, R) ∈ ∂X :
(
S(n), E(n), I(n), R(n)

) ∈ ∂X, n = , , . . .
}

.

It is clear that the solution of model () with initial condition (S(), E(), I(), R()) =
(S, , , R) has the form (S(n), , , R(n)). Hence, we have

{
(S, , , R) : S > , R ≥ 

} ⊂ M∂ .

Suppose that there is (S, E, I, R) ∈ M∂ such that (S, E, I, R) /∈ {(S, , , R) : S >
, R ≥ }. Then, we have E >  or I > . Let (S(n), E(n), I(n), R(n)) be the solution of
model () with initial condition (S(), E(), I(), R()) = (S, E, I, R). If E > , then from
the second equation of model () we have

E(n + ) ≥ E(n) – (μ + δ)E(n + ).

Hence, E(n) ≥ E()( 
+μ+δ

)n >  for all n ≥ . From the third equation of model () we
further have

I(n + ) > I(n) – (μ + γ )I(n + ), n ≥ .

Hence, I(n) > I()( 
+μ+γ

)n ≥  for all n ≥ . This shows that a solution (S(n), E(n), I(n),
R(n)) /∈ ∂X for all n > . If I > , then from third equation of model () we have
I(n) ≥ I()( 

+μ+γ
)n >  for all n ≥ . Since S(n) >  and f (S(n), I(n)) >  for all n ≥ ,

from the second equation of model () we further have E(n) > E()( 
+μ+δ

)n ≥  for all
n ≥ . This also shows that the solution (S(n), E(n), I(n), R(n)) /∈ ∂X for all n > . Hence,
(S, E, I, R) /∈ M∂ , which leads to a contradiction. Thus, we also have

M∂ ⊂ {
(S, , , R) : S > , R ≥ 

}
.

Therefore, M∂ = {(S, , , R) : S > , R ≥ }.



Fan et al. Advances in Difference Equations  (2016) 2016:123 Page 11 of 20

It is clear that model () restricted to M∂ has a globally attractive equilibrium P(S,
, , ). This shows that {P} in M∂ is isolated invariable and acyclic. Now, we prove that

W s(P) ∩ X = ∅,

where

W s(P) =
{(

S(), E(), I(), R()
)

: lim
n→∞

(
S(n), E(n), I(n), R(n)

)
= P

}
,

which is said to be a stable set of P. Suppose that there is a point (S(), E(), I(), R()) ∈ X

such that limn→∞(S(n), E(n), I(n), R(n)) = P. Since

lim
(S,E,I,R)→P

f (S, E, I, R)
I

=
∂f (S, , , )

∂I
,

for the above ε > , there is η >  such that when |S – S| < η, E < η, I < η, and R < η,
we have

f (S, E, I, R)
I

≥ ∂f (S, , , )
∂I

– ε.

We can choose an integer n >  such that |S(n) – S| < η, E(n) < η, I(n) < η, and R(n) <
η for all n ≥ n.

Consider the Lyapunov function

V (n) = pE(n) + I(n).

We have that, for n > n,


V (n) = V (n + ) – V (n)

= p
(
f
(
S(n + ), E(n + ), I(n + ), R(n + )

)
– (μ + δ)E(n + )

)

+
(
δE(n + ) – (μ + γ )I(n + )

)

≥ p
((

∂f (S, , , )
∂I

– ε

)

I(n + ) – (μ + δ)E(n + )
)

+
(
δE(n + ) – (μ + γ )I(n + )

)

=
[

p
(

∂f (S, , , )
∂I

– ε

)

– (μ + γ )
]

I(n + ) +
[

δ

p
– (μ + δ)

]

pE(n + )

≥ mV (n + ),

where

m = min

{

p
(

∂f (S, , , )
∂I

– ε

)

– (μ + γ ),
δ

p
– (μ + δ)

}

> .

Hence, we finally have limn→∞ V (n) = ∞, which leads to a contradiction with
limn→∞ V (n) = . It follows that W s(P) ∩ X = ∅. Thus, by the theorems of uniform per-
sistence for dynamical systems given in [], we obtain that model () is permanent. This
completes the proof. �
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Remark . When f (S, E, I, R) = SI
N , by Theorem ., if R = βδ

(μ+γ )(μ+δ) > , then the dis-
ease in model () is permanent.

Remark . Theorem . only obtains the permanence of the disease for model (). How-
ever, whether we can also prove that an endemic equilibrium P∗ is globally attractive for
model () when R > ? In the following section, we will give a partial positive answer. We
will prove that, for special case σ =  of model (), an endemic equilibrium P∗ is globally
attractive only when R > .

5 Global attractivity of endemic equilibrium in a particular case
In this section, we consider a particular case of model (), that is, f (S, E, I, R) = f (S, E, I)
and σ =  in model (). Model () becomes of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(n + ) = S(n) + � – f (S(n + ), E(n + ), I(n + )) – μS(n + ),
E(n + ) = E(n) + f (S(n + ), E(n + ), I(n + )) – (μ + δ)E(n + ),
I(n + ) = I(n) + δE(n + ) – (μ + γ )I(n + ),
R(n + ) = R(n) + γ I(n + ) – μR(n + ).

()

Because R(n) does not appear in the first three equations of model (), we only need to
consider the equivalent system

⎧
⎪⎨

⎪⎩

S(n + ) = S(n) + � – f (S(n + ), E(n + ), I(n + )) – μS(n + ),
E(n + ) = E(n) + f (S(n + ), E(n + ), I(n + )) – (μ + δ)E(n + ),
I(n + ) = I(n) + δE(n + ) – (μ + γ )I(n + ).

()

We have the following result on the global attractivity of the endemic equilibrium for
model ().

Theorem . IfR > , then the endemic equilibrium P∗ of model () is globally attractive.

Proof Let P∗(S∗, E∗, I∗) be an endemic equilibrium of model (). Then

⎧
⎪⎨

⎪⎩

� – f (S∗, E∗, I∗) – μS∗ = ,
f (S∗, E∗, I∗) – (μ + δ)E∗ = ,
δE∗ – (μ + γ )I∗ = .

()

Let (S(n), E(n), I(n)) be any positive solution of system (). Define the functions

V
(
S(n)

)
= S(n) – S∗ –

∫ S(n)

S∗

f (S∗, E∗, I∗)
f (η, E∗, I∗)

dη,

V
(
E(n)

)
= E(n) – E∗ – E∗ ln

E(n)
E∗

,

and

V
(
I(n)

)
= I(n) – I∗ – I∗ ln

I(n)
I∗

.
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From (H) we easily obtain that when S(n) �= S∗,

V
(
S(n)

)
> S(n) – S∗ –

∫ S(n)

S∗

f (S∗, E∗, I∗)
f (S∗, E∗, I∗)

dη = .

Since g(x) = x –  – ln x >  for x >  and x �= , we obtain that when E(n) �= E∗ and I(n) �= I∗,
V(E(n)) >  and V(I(n)) > . Computing 
V(n) = V(S(n + )) – V(S(n)), we have


V(n) = S(n + ) – S(n) –
∫ S(n+)

S(n)

f (S∗, E∗, I∗)
f (η, E∗, I∗)

dη.

From (H) it follows that, for any η between S(n) and S(n + ),

–
f (S∗, E∗, I∗)
f (η, E∗, I∗)

≤ –
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)
if S(n + ) ≥ S(n),

–
f (S∗, E∗, I∗)
f (η, E∗, I∗)

≥ –
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)
if S(n + ) ≤ S(n).

We have

–
∫ S(n+)

S(n)

f (S∗, E∗, I∗)
f (η, E∗, I∗)

dη ≤ –
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)
(
S(n + ) – S(n)

)
.

Therefore, from () we obtain


V(n) ≤
[

 –
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)

]
(
S(n + ) – S(n)

)

=
[

 –
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)

]
[
� – f

(
S(n + ), E(n + ), I(n + )

)

– μS(n + )
]

= – μ

[

 –
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)

]
(
S(n + ) – S∗

)

+ f (S∗, E∗, I∗) – f
(
S(n + ), E(n + ), I(n + )

)

–
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)
f (S∗, E∗, I∗)

+
f (S∗, E∗, I∗)

f (S(n + ), E∗, I∗)
f
(
S(n + ), E(n + ), I(n + )

)
. ()

Calculating �V(n) = V(E(n + )) – V(E(n)), we obtain

�V(n) = E(n + ) – E(n) – I∗ ln
E(n + )

E(n)
.

Using the inequality ln( – x) ≤ –x for x < , we have

– ln
E(n + )

E(n)
= ln

[

 –
(

 –
E(n)

E(n + )

)]

≤ –
[

 –
E(n)

E(n + )

]

.
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Therefore,


V(n) ≤
[

 –
E∗

E(n + )

]
(
E(n + ) – E(n)

)

=
[

 –
E∗

E(n + )

]
[
f
(
S(n + ), E(n + ), I(n + )

)
– (k + μ)E(n + )

]

= f
(
S(n + ), E(n + ), I(n + )

)
– (k + μ)E(n + )

–
E∗

E(n + )
f
(
S(n + ), E(n + ), I(n + )

)
+ (k + μ)E∗. ()

Similarly, calculating �V(n) = V(I(n + )) – V(I(n)), we obtain


V(n) ≤ δE(n + ) – (μ + γ )I(n + )

–
I∗

I(n + )
δE(n + ) + (μ + γ )I∗. ()

Choose the Lyapunov function

V (n) = V
(
S(n)

)
+ V

(
E(n)

)
+

f (S∗, E∗, I∗)
(μ + γ )I∗

V
(
I(n)

)
.

For convenience of calculations, we denote S = S(n + ), E = E(n + ), and I = I(n + ).
Computing 
V (n) = V (n + ) – V (n), from ()-() we obtain


V (n) ≤ –μ

[

 –
f (S∗, E∗, I∗)
f (S, E∗, I∗)

]

(S – S∗) + f (S∗, E∗, I∗)
[

 –
f (S∗, E∗, I∗)
f (S, E∗, I∗)

+
f (S, E, I)

f (S, E∗, I∗)
–

E∗f (S, E, I)
Ef (S∗, E∗, I∗)

–
I
I∗

–
I∗E
IE∗

]

= f (S∗, E∗, I∗)
[

 –
I∗E
IE∗ + ln

I∗E
IE∗

]

– f (S∗, E∗, I∗) ln
I∗E
IE∗

+ f (S∗, E∗, I∗)
[

 –
f (S, E, I)E∗

f (S∗, E∗, I∗)E
+ ln

f (S, E, I)E∗

f (S∗, E∗, I∗)E

]

– f (S∗, E∗, I∗) ln
f (S, E, I)E∗

f (S∗, E∗, I∗)E

+ f (S∗, E∗, I∗)
[

 –
f (S∗, E∗, I∗)
f (S, E∗, I∗)

+ ln
f (S∗, E∗, I∗)
f (S, E∗, I∗)

]

– f (S∗, E∗, I∗) ln
f (S∗, E∗, I∗)
f (S, E∗, I∗)

+
f (S∗, E∗, I∗)f (S, E, I)

f (S, E∗, I∗)

[

 –
If (S, E∗, I∗)
I∗f (S, E, I)

+ ln
If (S, E∗, I∗)
I∗f (S, E, I)

]

–
f (S∗, E∗, I∗)f (S, E, I)

f (S, E∗, I∗)
ln

If (S, E∗, I∗)
I∗f (S, E, I)

≤ –f (S∗, E∗, I∗) ln
I∗f (S, E, I)
If (S, E∗, I∗)

–
f (S∗, E∗, I∗)f (S, E, I)

f (S, E∗, I∗)
ln

If (S, E∗, I∗)
I∗f (S, E, I)

=
f (S∗, E∗, I∗)

f (S, E, I)
[
f (S, E∗, I∗) – f (S, E, I)

]
[

ln
f (S, E∗, I∗)

I∗
– ln

f (S, E, I)
I

]

.
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Figure 1 Time series of S(n), E(n), I(n), and R(n) in Example 6.1

From (H) we obtain 
V (n) ≤  for any n ≥ , and 
V (n) ≡  implies I(n) ≡ I∗ for all
n ≥ . From I(n) ≡ I∗ and the third equation of model () it follows that E(n) ≡ E∗ for all
n ≥ . Furthermore, from the second equation of model () we obtain that S(n) ≡ S∗ for
all n ≥ .

Therefore, using the theorems of stability of difference equations, we finally obtain that
the endemic equilibrium P∗ of model () is globally attractive. This completes the proof.

�

Remark . In Remark ., we indicated that for SEIRS-type model (), an important
problem is to prove that the endemic equilibrium is globally attractive only when R > .
From Theorem . we see that only for the particular case σ =  of model (), that is, SEIR-
type model, we get a positive answer. Therefore, an interesting open problem for general
SEIRS model () is whether the endemic equilibrium is also globally attractive only when
R > .

Remark . From the proofs of Theorem ., Theorem ., and Theorem . we easily
see that the condition μ ≤ min{μ,μ,μ} is not used. In fact, this condition is only used
in Theorem . to obtain the positivity of solutions of model (). Therefore, an interesting
question is whether the condition μ ≤ min{μ,μ,μ} can be taken out in the proof of
the positivity of solutions of model ().
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Figure 2 Time series of S(n), E(n), I(n), and R(n) in Example 6.2

6 Numerical examples
Now, we give numerical examples to show that for SEIRS-type model (), the endemic
equilibrium may be globally attractive for different incidence function f (S, E, I, R), which
satisfies (H) only when the basic reproduction number R > .

Example . In model (), we take f (S, E, I, R) = βSI
+αI+ωS , � = ., μ = ., μ = ., μ =

., β = ., δ = ., ω = ., and γ = .. The parameters μ, α, and σ will be chosen
later.

By calculating we have the basic reproduction number R = . > . We further take
μ = ., α = ., and σ = .. Then the endemic equilibrium P∗ = (., ., .,
.). From the numerical simulations (see Figure ) we obtain that P∗ may be globally
attractive.

Example . In model (), we take f (S, E, I, R) = βSI
+αI , � = ., μ = ., μ = ., μ =

., β = ., δ = ., and γ = .. The parameters μ, α, and σ will be chosen later.

By calculating we have the basic reproduction number R = . > . We further take
μ = ., α = ., and σ = .. Then the endemic equilibrium P∗ = (., ., .,
.). By numerical simulations (see Figure ) we obtain that P∗ may be globally attrac-
tive.

Example . In model (), we take f (S, E, I, R) = βSI
(+ωS)(+αI) , � = , μ = ., μ = .,

μ = ., β = ., δ = ., ω = ., and γ = .. The parameters μ, α, and σ will be chosen
later.
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Figure 3 Time series of S(n), E(n), I(n), and R(n) in Example 6.3

By calculating we have the basic reproduction number R = . > . We further take
μ = ., α = ., and σ = .. Then the endemic equilibrium P∗ = (., ., .,
.). By numerical simulations (see Figure ) we obtain that P∗ may be globally attrac-
tive.

Example . In model (), we take f (S, E, I, R) = βSI
(+ωS)(+αI) , � = ., μ = ., μ = .,

μ = ., β = ., δ = ., ω = ., and γ = .. The parameters μ, α, and σ will be
chosen later.

By calculating we have the basic reproduction number R = . > . We further take
μ = ., α = ., and σ = .. Then the endemic equilibrium P∗ = (., ., .,
.). By numerical simulations (see Figure ) we obtain that P∗ may be globally attrac-
tive.

All these examples of numerical simulations show that when R > , no matter suffi-
ciently greater than one or closer to one but still greater than one, we always obtain that
the endemic equilibrium P∗ is globally attractive, which may offer an affirmative conjec-
ture to the open problem given in Remark ., that is, for the general SEIRS model () the
endemic equilibrium P∗ is globally attractive only when R > . Therefore, in our future
work, we expect to obtain the corresponding theoretical results for this open problem.

7 Discussion
In this paper, we proposed a discrete SEIRS epidemic model () with general nonlinear
incidence, which is described by the backward difference scheme. By our discussions pre-
sented in this paper, necessary and sufficient conditions for the global attractivity of the
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Figure 4 Time series of S(n), E(n), I(n), and R(n) in Example 6.4

disease-free equilibrium and the permanence of the disease are established, that is, if the
basic reproduction numberR ≤ , then the disease-free equilibrium is globally attractive,
and if R > , then the disease is permanent. Furthermore, when the model degenerates
into SEIR model, it is proved that when R > , the model has a unique globally attractive
endemic equilibrium.

Unfortunately, for SEIRS model (), when the basic reproduction number is greater than
one, we do not obtain the local asymptotic stability and global attractivity of the endemic
equilibrium. But the numerical examples given in Section  show that the endemic equi-
librium for general SEIRS model () may be globally attractive. Therefore, it is still an im-
portant and interesting open problem how to apply the linearization method to establish
the local asymptotic stability of the endemic equilibrium and how to construct the discrete
analogue Lyapunov functions to study the global attractivity of the endemic equilibrium
for general SEIRS model ().

In addition, the dynamical behaviors for the nonautonomous discrete SEIRS epidemic
models, discrete SEIRS epidemic models with vaccination, stage-structured discrete
SEIRS epidemic models, and delayed discrete SEIRS epidemic models with nonlinear in-
cidence described by the backward difference scheme are rarely considered. Whether
similar results on the permanence and extinction of the disease and the global attractiv-
ity of the disease-free equilibrium for these models can be obtained is also an interesting
open question.

On the other hand, corresponding to continuous model (), we also have the following
discrete SEIRS epidemic models with general nonlinear incidence described by the for-
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ward difference scheme or Micken’s nonstandard finite difference scheme:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(n + ) – S(n) = � – f (X(n)) – μS(n) + σR(n),
E(n + ) – E(n) = f (X(n)) – (μ + δ)E(n),
I(n + ) – I(n) = δE(n) – (μ + γ )I(n),
R(n + ) – R(n) = γ I(n) – (μ + σ )R(n),

where X(n) = (S(n), E(n), I(n), R(n)), and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S(n+)–S(n)
φ(h) = � – f (S(n + ), I(n)) – μS(n + ) + σR(n + ),

E(n+)–E(n)
φ(h) = f (S(n + ), I(n)) – (μ + δ)E(n + ),

I(n+)–I(n)
φ(h) = δE(n + ) – (μ + γ )I(n + ),

R(n+)–R(n)
φ(h) = γ I(n + ) – (μ + σ )R(n + ),

with the denominator function φ(h) = eμh–
μ

, and h >  is the time-step size. An impor-
tant open problem is whether the results obtained in this paper for model () can also be
extended to these models.
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