467 research outputs found

    A Comprehensive Model of Audiovisual Perception: Both Percept and Temporal Dynamics

    Get PDF
    The sparse information captured by the sensory systems is used by the brain to apprehend the environment, for example, to spatially locate the source of audiovisual stimuli. This is an ill-posed inverse problem whose inherent uncertainty can be solved by jointly processing the information, as well as introducing constraints during this process, on the way this multisensory information is handled. This process and its result - the percept - depend on the contextual conditions perception takes place in. To date, perception has been investigated and modeled on the basis of either one of two of its dimensions: the percept or the temporal dynamics of the process. Here, we extend our previously proposed audiovisual perception model to predict both these dimensions to capture the phenomenon as a whole. Starting from a behavioral analysis, we use a data-driven approach to elicit a Bayesian network which infers the different percepts and dynamics of the process. Context-specific independence analyses enable us to use the model's structure to directly explore how different contexts affect the way subjects handle the same available information. Hence, we establish that, while the percepts yielded by a unisensory stimulus or by the non-fusion of multisensory stimuli may be similar, they result from different processes, as shown by their differing temporal dynamics. Moreover, our model predicts the impact of bottom-up (stimulus driven) factors as well as of top-down factors (induced by instruction manipulation) on both the perception process and the percept itself

    Differential Phagocytosis of White versus Opaque Candida albicans by Drosophila and Mouse Phagocytes

    Get PDF
    The human fungal pathogen Candida albicans resides asymptomatically in the gut of most healthy people but causes serious invasive diseases in immunocompromised patients. Many C. albicans strains have the ability to stochastically switch between distinct white and opaque cell types, but it is not known with certainty what role this switching plays in the physiology of the organism. Here, we report a previously undescribed difference between white and opaque cells, namely their interaction with host phagocytic cells. We show that both Drosophila hemocyte-derived S2 cells and mouse macrophage-derived RAW264.7 cells preferentially phagocytose white cells over opaque cells. This difference is seen both in the overall percentage of cultured cells that phagocytose white versus opaque C. albicans and in the average number of C. albicans taken up by each phagocytic cell. We conclude that susceptibility to phagocytosis by cells of the innate immune system is an important distinction between white and opaque C. albicans, and propose that one role of switching from the prevalent white form into the rarer opaque form may be to allow C. albicans to escape phagocytosis

    Fuzzy positive primitive formulas

    Get PDF
    Can non-classical logic contribute to the analysis of complexity in computer science? In this paper, we give an step towards the solution of this open problem, taking a logical model-theoretic approach to the analysis of complexity in fuzzy constraint satisfaction. We study fuzzy positive-primitive sentences, and we present an algebraic characterization of classes axiomatized by these kind of sentences in terms of homomorphisms and finite direct products. The ultimate goal is to study the expressiveness and reasoning mechanisms of non-classical languages, with respect to constraint satisfaction problems and, in general, in modelling decision scenario

    Differential Regulation of Adhesion Complex Turnover by ROCK1 and ROCK2

    Get PDF
    ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes

    Human Mena Associates with Rac1 Small GTPase in Glioblastoma Cell Lines

    Get PDF
    Mammarian enabled (Mena), a member of the Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) family of proteins, has been implicated in cell motility through regulation of the actin cytoskeleton assembly, including lamellipodial protrusion. Rac1, a member of the Rho family GTPases, also plays a pivotal role in the formation of lamellipodia. Here we report that human Mena (hMena) colocalizes with Rac1 in lamellipodia, and using an unmixing assisted acceptor depletion fluorescence resonance energy transfer (u-adFRET) analysis that hMena associates with Rac1 in vivo in the glioblastoma cell line U251MG. Depletion of hMena by siRNA causes cells to be highly spread with the formation of lamellipodia. This cellular phenotype is canceled by introduction of a dominant negative form of Rac1. A Rac activity assay and FRET analysis showed that hMena knock-down cells increased the activation of Rac1 at the lamellipodia. These results suggest that hMena possesses properties which help to regulate the formation of lamellipodia through the modulation of the activity of Rac1

    Paxillin and Hic-5 Interaction with Vinculin Is Differentially Regulated by Rac1 and RhoA

    Get PDF
    Cell migration is of paramount importance to organism development and maintenance as well as multiple pathological processes, including cancer metastasis. The RhoGTPases Rac1 and RhoA are indispensable for cell migration as they regulate cell protrusion, cell-extracellular matrix (ECM) interactions and force transduction. However, the consequences of their activity at a molecular level within the cell remain undetermined. Using a combination of FRET, FRAP and biochemical analyses we show that the interactions between the focal adhesion proteins vinculin and paxillin, as well as the closely related family member Hic-5 are spatially and reciprocally regulated by the activity of Rac1 and RhoA. Vinculin in its active conformation interacts with either paxillin or Hic-5 in adhesions in response to Rac1 and RhoA activation respectively, while inactive vinculin interacts with paxillin in the membrane following Rac1 inhibition. Additionally, Rac1 specifically regulates the dynamics of paxillin as well as its binding partner and F-actin interacting protein actopaxin (α-parvin) in adhesions. Furthermore, FRET analysis of protein:protein interactions within cell adhesions formed in 3D matrices revealed that, in contrast to 2D systems vinculin interacts preferentially with Hic-5. This study provides new insight into the complexity of cell-ECM adhesions in both 2D and 3D matrices by providing the first description of RhoGTPase-coordinated protein:protein interactions in a cellular microenvironment. These data identify discrete roles for paxillin and Hic-5 in Rac1 and RhoA-dependent cell adhesion formation and maturation; processes essential for productive cell migration

    Amiloride Enhances Antigen Specific CTL by Faciliting HBV DNA Vaccine Entry into Cells

    Get PDF
    The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses

    Quantifying garnet-melt trace element partitioning using lattice-strain theory: New crystal-chemical and thermodynamic constraints

    Get PDF
    Many geochemical models of major igneous differentiation events on the Earth, the Moon, and Mars invoke the presence of garnet or its high-pressure majoritic equivalent as a residual phase, based on its ability to fractionate critical trace element pairs (Lu/Hf, U/Th, heavy REE/light REE). As a result, quantitative descriptions of mid-ocean ridge and hot spot magmatism, and lunar, martian, and terrestrial magma oceans require knowledge of garnet-melt partition coefficients over a wide range of conditions. In this contribution, we present new crystal-chemical and thermodynamic constraints on the partitioning of rare earth elements (REE), Y and Sc between garnet and anhydrous silicate melt as a function of pressure (P), temperature (T), and composition (X). Our approach is based on the interpretation of experimentally determined values of partition coefficients D using lattice-strain theory. In this and a companion paper (Draper and van Westrenen this issue) we derive new predictive equations for the ideal ionic radius of the dodecahedral garnet X-site,

    Universal Artifacts Affect the Branching of Phylogenetic Trees, Not Universal Scaling Laws

    Get PDF
    The superficial resemblance of phylogenetic trees to other branching structures allows searching for macroevolutionary patterns. However, such trees are just statistical inferences of particular historical events. Recent meta-analyses report finding regularities in the branching pattern of phylogenetic trees. But is this supported by evidence, or are such regularities just methodological artifacts? If so, is there any signal in a phylogeny?In order to evaluate the impact of polytomies and imbalance on tree shape, the distribution of all binary and polytomic trees of up to 7 taxa was assessed in tree-shape space. The relationship between the proportion of outgroups and the amount of imbalance introduced with them was assessed applying four different tree-building methods to 100 combinations from a set of 10 ingroup and 9 outgroup species, and performing covariance analyses. The relevance of this analysis was explored taking 61 published phylogenies, based on nucleic acid sequences and involving various taxa, taxonomic levels, and tree-building methods.All methods of phylogenetic inference are quite sensitive to the artifacts introduced by outgroups. However, published phylogenies appear to be subject to a rather effective, albeit rather intuitive control against such artifacts. The data and methods used to build phylogenetic trees are varied, so any meta-analysis is subject to pitfalls due to their uneven intrinsic merits, which translate into artifacts in tree shape. The binary branching pattern is an imposition of methods, and seldom reflects true relationships in intraspecific analyses, yielding artifactual polytomies in short trees. Above the species level, the departure of real trees from simplistic random models is caused at least by two natural factors--uneven speciation and extinction rates; and artifacts such as choice of taxa included in the analysis, and imbalance introduced by outgroups and basal paraphyletic taxa. This artifactual imbalance accounts for tree shape convergence of large trees.There is no evidence for any universal scaling in the tree of life. Instead, there is a need for improved methods of tree analysis that can be used to discriminate the noise due to outgroups from the phylogenetic signal within the taxon of interest, and to evaluate realistic models of evolution, correcting the retrospective perspective and explicitly recognizing extinction as a driving force. Artifacts are pervasive, and can only be overcome through understanding the structure and biological meaning of phylogenetic trees. Catalan Abstract in Translation S1
    • …
    corecore