39 research outputs found

    Firms' Main Market, Human Capital and Wages

    Get PDF
    Recent international trade literature emphasizes two features in characterizing the current patterns of trade: efficiency heterogeneity at the firm level and quality differentiation. This paper explores human capital and wage differences across firms in that context. We build a partial equilibrium model predicting that firms selling in more-remote markets employ higher human capital and pay higher wages to employees within each education group. The channel linking these variables is firms’ endogenous choice of quality. Predictions are tested using Spanish employer-employee matched data that classify firms according to four main destination markets: local, national, European Union, and rest of the World. Employees’ average education is increasing in the remoteness of firm’s main output market. Market–destination wage premia are large, increasing in the remoteness of the market, and increasing in individual education. These results suggest that increasing globalization may play a significant role in raising wage inequality within and across education groups

    Environmental differences between sites control the diet and nutrition of the carnivorous plant Drosera rotundifolia

    Get PDF
    Background and aims: Carnivorous plants are sensitive to small changes in resource availability, but few previous studies have examined how differences in nutrient and prey availability affect investment in and the benefit of carnivory. We studied the impact of site-level differences in resource availability on ecophysiological traits of carnivory for Drosera rotundifolia L. Methods: We measured prey availability, investment in carnivory (leaf stickiness), prey capture and diet of plants growing in two bogs with differences in N deposition and plant available N: Cors Fochno (0.62 g m−2 yr.−1, 353 μg l−1), Whixall Moss (1.37 g m−2 yr.−1, 1505 μg l−1). The total N amount per plant and the contributions of prey/root N to the plants’ N budget were calculated using a single isotope natural abundance method. Results: Plants at Whixall Moss invested less in carnivory, were less likely to capture prey, and were less reliant on prey-derived N (25.5% compared with 49.4%). Actual prey capture did not differ between sites. Diet composition differed – Cors Fochno plants captured 62% greater proportions of Diptera. Conclusions: Our results show site-level differences in plant diet and nutrition consistent with differences in resource availability. Similarity in actual prey capture may be explained by differences in leaf stickiness and prey abundance

    Both the C-Terminal Polylysine Region and the Farnesylation of K-RasB Are Important for Its Specific Interaction with Calmodulin

    Get PDF
    Background: Ras protein, as one of intracellular signal switches, plays various roles in several cell activities such as differentiation and proliferation. There is considerable evidence showing that calmodulin (CaM) binds to K-RasB and dissociates K-RasB from membrane and that the inactivation of CaM is able to induce K-RasB activation. However, the mechanism for the interaction of CaM with K-RasB is not well understood. Methodology/Principal Findings: Here, by applying fluorescence spectroscopy and isothermal titration calorimetry, we have obtained thermodynamic parameters for the interaction between these two proteins and identified the important elements of K-RasB for its interaction with Ca 2+ /CaM. One K-RasB molecule interacts with one CaM molecule in a GTP dependent manner with moderate, micromolar affinity at physiological pH and physiologic ionic strength. Mutation in the polybasic domain of K-Ras decreases the binding affinity. By using a chimera in which the C-terminal polylysine region of K-RasB has been replaced with that of H-Ras and vice versa, we find that at physiological pH, H-Ras-(KKKKKK) and Ca 2+ /CaM formed a 1:1 complex with an equilibrium association constant around 10 5 M 21, whereas no binding reaction of K-RasB-(DESGPC) with Ca 2+ /CaM is detected. Furthermore, the interaction of K-RasB with Ca 2+ /CaM is found to be enhanced by the farnesylation of K-RasB. Conclusions/Significance: We demonstrate that the polylysine region of K-RasB not only contributes importantly to th
    corecore