156 research outputs found

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode <it>Caenorhabditis elegans </it>(CB4856 and CB4858) and the reference genome (N2).</p> <p>Results</p> <p>The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.</p> <p>In both CB4856 and CB4858, based on a measure of the strength of selection (k<sub>a</sub>/k<sub>s</sub>), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, k<sub>a</sub>/k<sub>s </sub>values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, k<sub>a</sub>/k<sub>s </sub>values differ between chromosomes.</p> <p>Conclusions</p> <p>The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the k<sub>a</sub>/k<sub>s </sub>ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.</p

    Alexithymia, but not Autism Spectrum Disorder, may be Related to the Production of Emotional Facial Expressions

    Get PDF
    Background A prominent diagnostic criterion of autism spectrum disorder (ASD) relates to the abnormal or diminished use of facial expressions. Yet little is known about the mechanisms that contribute to this feature of ASD. Methods We showed children with and without ASD emotionally charged video clips in order to parse out individual differences in spontaneous production of facial expressions using automated facial expression analysis software. Results Using hierarchical multiple regression, we sought to determine whether alexithymia (characterized by difficulties interpreting one’s own feeling states) contributes to diminished facial expression production. Across groups, alexithymic traits—but not ASD traits, IQ, or sex—were associated with quantity of facial expression production. Conclusions These results accord with a growing body of research suggesting that many emotion processing abnormalities observed in ASD may be explained by co-occurring alexithymia. Developmental and clinical considerations are discussed, and it is argued that alexithymia is an important but too often ignored trait associated with ASD that may have implications for subtyping individuals on the autism spectrum

    Preparation of Hydrogen Permeable Membrane Using Nanoparticles Electrophoresis Technique

    Get PDF
    Hydrogen perm-selective membranes composed of Pd nanoparticles were investigated. The nanoparticles were prepared by ultrasonic reduction from PdII ions, and then deposited on a substrate disc with electrophoresis technique. These electrophoretic membranes have shown high performance of perm-selectivity for H2 with separation factor α = 3.85, under room temperature

    Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis

    Get PDF
    Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis

    The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization

    Get PDF
    Background: Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results: We have identified and characterized all known LIM domain-containing proteins in six metazoans and three nonmetazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineagespecific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion: Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    Context, cognition and communication in language

    Get PDF
    Questions pertaining to the unique structure and organisation of language have a long history in the field of linguistics. In recent years, researchers have explored cultural evolutionary explanations, showing how language structure emerges from weak biases amplified over repeated patterns of learning and use. One outstanding issue in these frameworks is accounting for the role of context. In particular, many linguistic phenomena are said to to be context-dependent; interpretation does not take place in a void, and requires enrichment from the current state of the conversation, the physical situation, and common knowledge about the world. Modelling the relationship between language structure and context is therefore crucial for developing a cultural evolutionary approach to language. One approach is to use statistical analyses to investigate large-scale, cross-cultural datasets. However, due to the inherent limitations of statistical analyses, especially with regards to the inadequacy of these methods to test hypotheses about causal relationships, I argue that experiments are better suited to address questions pertaining to language structure and context. From here, I present a series of artificial language experiments, with the central aim being to test how manipulations to context influence the structure and organisation of language. Experiment 1 builds upon previous work in iterated learning and communication games through demonstrating that the emergence of optimal communication systems is contingent on the contexts in which languages are learned and used. The results show that language systems gradually evolve to only encode information that is informative for conveying the intended meaning of the speaker - resulting in markedly different systems of communication. Whereas Experiment 1 focused on how context influences the emergence of structure, Experiments 2 and 3 investigate under what circumstances do manipulations to context result in the loss of structure. While the results are inconclusive across these two experiments, there is tentative evidence that manipulations to context can disrupt structure, but only when interacting with other factors. Lastly, Experiment 4 investigates whether the degree of signal autonomy (the capacity for a signal to be interpreted without recourse to contextual information) is shaped by manipulations to contextual predictability: the extent to which a speaker can estimate and exploit contextual information a hearer uses in interpreting an utterance. When the context is predictable, speakers organise languages to be less autonomous (more context-dependent) through combining linguistic signals with contextual information to reduce effort in production and minimise uncertainty in comprehension. By decreasing contextual predictability, speakers increasingly rely on strategies that promote more autonomous signals, as these signals depend less on contextual information to discriminate between possible meanings. Overall, these experiments provide proof-of-concept for investigating the relationship between language structure and context, showing that the organisational principles underpinning language are the result of competing pressures from context, cognition, and communication
    corecore