42 research outputs found

    Is EC class predictable from reaction mechanism?

    Get PDF
    We thank the Scottish Universities Life Sciences Alliance (SULSA) and the Scottish Overseas Research Student Awards Scheme of the Scottish Funding Council (SFC) for financial support.Background: We investigate the relationships between the EC (Enzyme Commission) class, the associated chemical reaction, and the reaction mechanism by building predictive models using Support Vector Machine (SVM), Random Forest (RF) and k-Nearest Neighbours (kNN). We consider two ways of encoding the reaction mechanism in descriptors, and also three approaches that encode only the overall chemical reaction. Both cross-validation and also an external test set are used. Results: The three descriptor sets encoding overall chemical transformation perform better than the two descriptions of mechanism. SVM and RF models perform comparably well; kNN is less successful. Oxidoreductases and hydrolases are relatively well predicted by all types of descriptor; isomerases are well predicted by overall reaction descriptors but not by mechanistic ones. Conclusions: Our results suggest that pairs of similar enzyme reactions tend to proceed by different mechanisms. Oxidoreductases, hydrolases, and to some extent isomerases and ligases, have clear chemical signatures, making them easier to predict than transferases and lyases. We find evidence that isomerases as a class are notably mechanistically diverse and that their one shared property, of substrate and product being isomers, can arise in various unrelated ways. The performance of the different machine learning algorithms is in line with many cheminformatics applications, with SVM and RF being roughly equally effective. kNN is less successful, given the role that non-local information plays in successful classification. We note also that, despite a lack of clarity in the literature, EC number prediction is not a single problem; the challenge of predicting protein function from available sequence data is quite different from assigning an EC classification from a cheminformatics representation of a reaction.Publisher PDFPeer reviewe

    Machine Learning Approach for Prescriptive Plant Breeding

    Get PDF
    We explored the capability of fusing high dimensional phenotypic trait (phenomic) data with a machine learning (ML) approach to provide plant breeders the tools to do both in-season seed yield (SY) prediction and prescriptive cultivar development for targeted agro-management practices (e.g., row spacing and seeding density). We phenotyped 32 SoyNAM parent genotypes in two independent studies each with contrasting agro-management treatments (two row spacing, three seeding densities). Phenotypic trait data (canopy temperature, chlorophyll content, hyperspectral reflectance, leaf area index, and light interception) were generated using an array of sensors at three growth stages during the growing season and seed yield (SY) determined by machine harvest. Random forest (RF) was used to train models for SY prediction using phenotypic traits (predictor variables) to identify the optimal temporal combination of variables to maximize accuracy and resource allocation. RF models were trained using data from both experiments and individually for each agro-management treatment. We report the most important traits agnostic of agro-management practices. Several predictor variables showed conditional importance dependent on the agro-management system. We assembled predictive models to enable in-season SY prediction, enabling the development of a framework to integrate phenomics information with powerful ML for prediction enabled prescriptive plant breeding

    Multiple Determinants of Whole and Regional Brain Volume among Terrestrial Carnivorans

    Get PDF
    Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Implantable cardioverter-defibrillator therapy for prevention of sudden death in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia.

    No full text
    none21IF=10.940noneCORRADO D; LEONI L; LINK MS; DELLA BELLA P; GAITA F; CURNIS A; SALERNO JU; IGIDBASHIAN D; RAVIELE A; DISERTORI M; ZANOTTO G; VERLATO R; VERGARA G; DELISE P; TURRINI P; BASSO C.; NACCARELLA F; MADDALENA F; ESTES NA RD; BUJA G; THIENE G.Corrado, Domenico; Leoni, Loira; Link, Ms; DELLA BELLA, P; Gaita, F; Curnis, A; Salerno, Ju; Igidbashian, D; Raviele, A; Disertori, M; Zanotto, G; Verlato, R; Vergara, G; Delise, P; Turrini, P; Basso, Cristina; Naccarella, F; Maddalena, F; ESTES NA, Rd; Buja, Gianfranco; Thiene, Gaetan
    corecore