1,166 research outputs found

    Binary orbits as the driver of γ-ray emission and mass ejection in classical novae

    Get PDF
    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel �10,000 solar masses of material at velocities exceeding 1,000 km/s. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of the thermonuclear runaway, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in GeV gamma-rays, suggesting that relativistic particles are accelerated by strong shocks in nova ejecta. Here we present high-resolution imaging of the gamma-ray-emitting nova V959 Mon at radio wavelengths, showing that its ejecta were shaped by binary motion: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters

    Rehabilitation of memory following brain injury (ReMemBrIn): study protocol for a randomised controlled trial

    Get PDF
    Background Impairments of memory are commonly reported by people with traumatic brain injuries (TBI). Such deficits are persistent, debilitating, and can severely impact quality of life. Currently, many do not routinely receive follow-up appointments for residual memory problems following discharge. Methods/Design This is a multi-centre, randomised controlled trial investigating the clinical and cost-effectiveness of a group-based memory rehabilitation programme. Three hundred and twelve people with a traumatic brain injury will be randomised from four centres. Participants will be eligible if they had a traumatic brain injury more than 3 months prior to recruitment, have memory problems, are 18 to 69 years of age, are able to travel to one of our centres and attend group sessions, and are able to give informed consent. Participants will be randomised in clusters of 4 to 6 to the group rehabilitation intervention or to usual care. Intervention groups will receive 10 weekly sessions of a manualised memory rehabilitation programme, which has been developed in previous pilot studies. The intervention will include restitution strategies to retrain impaired memory functions and compensation strategies to enable participants to cope with their memory problems. All participants will receive a follow-up postal questionnaire and an assessment by a research assistant at 6 and 12 months post-randomisation. The primary outcome is the Everyday Memory Questionnaire at 6 months. Secondary outcomes include the Rivermead Behavioural Memory Test-3, General Health Questionnaire-30, health related quality of life, cost-effectiveness analysis determined by the EQ-5D and a service use questionnaire, individual goal attainment, European Brain Injury Questionnaire (patient and relative versions), and the Everyday Memory Questionnaire-relative version. The primary analysis will be based on intention to treat. A mixed-model regression analysis of the Everyday Memory Questionnaire at 6 months will be used to estimate the effect of the group memory rehabilitation programme. Discussion The study will hopefully provide robust evidence regarding the clinical and cost-effectiveness of a group-based memory rehabilitation intervention for civilians and military personnel following TBI. We discuss our decision-making regarding choice of outcome measures and control group, and the unique challenges to recruiting people with memory problems to trials

    Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.

    Get PDF
    Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations

    Parental rating of sleep in children with attention deficit/hyperactivity disorder

    Full text link
    Objective: Sleep problems have often been associated with attention deficit/hyperactivity disorder (ADHD). Parents of those with ADHD and children with ADHD report sleep difficulties more frequently than healthy children and their parents. The primary objective of this paper is to describe sleep patterns and problems of 5 to 11-year-old children suffering from ADHD as described by parental reports and sleep questionnaires. Method: The study included 321 children aged 5–11 years (average age 8.4 years); 45 were diagnosed with ADHD, 64 had other psychiatric diagnoses, and 212 were healthy. One hundred and ninety-six of the test subjects were boys and 125 were girls. A semi-structured interview (Kiddie-SADS-PL) was used to DSM-IV diagnose ADHD and comorbidity in the clinical group. Sleep difficulties were rated using a structured sleep questionnaire (Children Sleep Behaviour Scale). Results: Children diagnosed with ADHD had a significantly increased occurrence of sleep problems. Difficulties relating to bedtime and unsettled sleep were significantly more frequent in the ADHD group than in the other groups. Children with ADHD showed prolonged sleep onset latency, but no difference was shown regarding numbers of awakenings per night and total sleep time per night. Comorbid oppositional defiant disorder appeared not to have an added effect on problematic behaviour around bedtime. Conclusion: Parents of children with ADHD report that their children do not sleep properly more often than other parents. The ADHD group report problems with bedtime resistance, problems with sleep onset latency, unsettled sleep and nightmares more often than the control groups. It may therefore be relevant for clinicians to initiate a closer examination of those cases reporting sleep difficulties

    Coracoid impingement syndrome: a literature review

    Get PDF
    Coracoid impingement syndrome is a less common cause of shoulder pain. Symptoms are presumed to occur when the subscapularis tendon impinges between the coracoid and lesser tuberosity of the humerus. Coracoid impingement should be included in the differential diagnosis when evaluating a patient with activity-related anterior shoulder pain. It is not thought to be as common as subacromial impingement, and the possibility of the coexistence of the two conditions must be taken into consideration before treatment of either as an isolated process. If nonoperative treatment fails to relieve symptoms, surgical decompression can be offered as an option

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Suppression of Stochastic Domain Wall Pinning Through Control of Gilbert Damping

    Get PDF
    Finite temperature micromagnetic simulations were used to investigate the magnetisation structure, propagation dynamics and stochastic pinning of domain walls in rare earth-doped Ni80Fe20 nanowires. We first show how the increase of the Gilbert damping, caused by the inclusion rare-earth dopants such as holmium, acts to suppress Walker breakdown phenomena. This allows domain walls to maintain consistent magnetisation structures during propagation. We then employ finite temperature simulations to probe how this affects the stochastic pinning of domain walls at notch-shaped artificial defect sites. Our results indicate that the addition of even a few percent of holmium allows domain walls to pin with consistent and well-defined magnetisation configurations, thus suppressing dynamically-induced stochastic pinning/depinning phenomena. Together, these results demonstrate a powerful, materials science-based solution to the problems of stochastic domain wall pinning in soft ferromagnetic nanowires
    corecore