1,235 research outputs found

    Vesicostomy as a Protector of Upper Urinary Tract in Long-Term Follow-Up

    Get PDF
    Introduction: The aim of this study was to analyze the results of vesicostomy in children as a protector of the upper urinary tract and assess the adjustments taken by the caregivers. Materials and Methods: Twenty-one children who had undergone vesicostomy with the Blocksom technique were evaluated. Their mean age was 3.7 years (range, < 1 to 10 years). The evaluation consisted of kidney function tests, cystography, and analysis of complications. Twenty parents or caregivers were interviewed about their attitudes towards vesicostomy and its outcomes. Results: The main causes of the vesical dysfunction were posterior urethral valve in 7 (33.3%) and myelomeningocele in 5 patients (23.8%). Ten children (58.8%) showed improvement and 7 (41,2%) showed cure. Hydronephrosis observed in 17 children was alleviated or cured following the procedure. Kidney function, tested by creatinine clearance calculation, remained stable or improved in 20 patients (95.2%). Episodes of urinary tract infection and 1 (71.4%), vesicoureteral reflux lowered in 8 of 21 (38.1%) and 10 of 14 patients respectively. Subjective evaluation of 20 cases showed that 18 children (90.0%) remained dry during the day and 14 caregivers/parents (70.0%) felt they had acquired the skills necessary to handle a patient with vesicostomy. The mean global rate of satisfaction of the results of the surgery ranging from 0 (worst result) to 10 (best result) was 8.7. Conclusion: Vesicostomy is a simple surgery that protects the upper urinary tract, decreases hydronephrosis, and improves kidney function. There was adequate adjustment to vesicostomy and a positive global evaluation as reported by the parents and caregivers.629610

    The pre-main sequence binary HK Ori : Spectro-astrometry and EXPORT data

    Full text link
    In this paper we present multi-epoch observations of the pre-main sequence binary HK Ori. These data have been drawn from the EXPORT database and are complemented by high quality spectro-astrometric data of the system. The spectroscopic data appear to be very well represented by a combination of an A dwarf star spectrum superposed on a (sub-)giant G-type spectrum. The radial velocity of the system is consistent with previous determinations, and does not reveal binary motion, as expected for a wide binary. The spectral, photometric and polarimetric properties and variability of the system indicate that the active object in the system is a T Tauri star with UX Ori characteristics. The spectro-astrometry of HK Ori is sensitive down to milli-arcsecond scales and confirms the speckle interferometric results from Leinert et al. The spectro-astrometry allows with fair certainty the identification of the active star within the binary, which we suggest to be a G-type T Tauri star based on its spectral characteristics.Comment: MNRAS in press 8 pages 7 figure

    Electroanalytical overview: The detection of chromium

    Get PDF
    Chromium exerts serious damage to human beings and to aquatic life and is one of the most common environmental contaminant and possess toxicity when present above threshold limits. In comparison with the traditional quantification methods such as atomic absorption spectroscopy (AAS), inductively coupled plasma mass spectrometry, UV-Vis or high-performance liquid chromatography, electrochemical methods towards monitoring chromium ions have the advantages of being portable, rapid, cost effective, simple, sensitive and selective enough to meet regulatory limits. This review presents the recent progress in the field of electroanalysis using different electrode platforms such as solid or screen-printed electrode (SPE) and various functional materials towards chromium determination. The fabrication strategy and the analytical performance of carbon nanomaterials (such as carbon nanotubes and graphene), metal and metal oxide nanomaterials enabled sensors for electrochemical determination of chromium (III) and chromium (VI) ions are summarized systematically. In addition, method validation and the application of these sensors in real samples for the analysis of chromium ions is discussed and future developments in this domain are provided

    Adjusting the connection length of additively manufactured electrodes changes the electrochemical and electroanalytical performance

    Get PDF
    Changing the connection length of an additively manufactured electrode (AME) has a significant impact on the electrochemical and electroanalytical response of the system. In the literature, many electrochemical platforms have been produced using additive manufacturing with great variations in how the AME itself is described. It is seen that when measuring the near-ideal outer-sphere redox probe hexaamineruthenium (III) chloride (RuHex), decreasing the AME connection length enhances the heterogeneous electrochemical transfer (HET) rate constant ((Formula presented.)) for the system. At slow scan rates, there is a clear change in the peak-to-peak separation (ΔEp) observed in the RuHex voltammograms, with the ΔEp shifting from 118 ± 5 mV to 291 ± 27 mV for the 10 and 100 mm electrodes, respectively. For the electroanalytical determination of dopamine, no significant difference is noticed at low concentrations between 10- and 100-mm connection length AMEs. However, at concentrations of 1 mM dopamine, the peak oxidation is shifted to significantly higher potentials as the AME connection length is increased, with a shift of 150 mV measured. It is recommended that in future work, all AME dimensions, not just the working electrode head size, is reported along with the resistance measured through electrochemical impedance spectroscopy to allow for appropriate comparisons with other reports in the literature. To produce the best additively manufactured electrochemical systems in the future, researchers should endeavor to use the shortest AME connection lengths that are viable for their designs

    Toward the Rapid Diagnosis of Sepsis: Detecting Interleukin-6 in Blood Plasma Using Functionalized Screen-Printed Electrodes with a Thermal Detection Methodology

    Get PDF
    This paper reports the detection of the inflammatory and sepsis-related biomarker, interleukin-6 (IL-6), in human blood plasma using functionalized screen-printed electrodes (SPEs) in conjunction with a thermal detection methodology, termed heat-transfer method (HTM). SPEs are functionalized with antibodies specific for IL-6 through electrodeposition of a diazonium linking group and N'-ethylcarbodiimide hydrochloride (EDC) coupling, which was tracked through the use of cyclic voltammetry and Raman spectroscopy. The functionalized SPEs are mounted inside an additively manufactured flow cell and connected to the HTM device. We demonstrate the ability to detect IL-6 at clinically relevant concentrations in PBS buffer (pH = 7.4) with no significant interference from the similarly sized sepsis-related biomarker procalcitonin (PCT). The limit of detection (3s) of the system is calculated to correspond to 3.4 ± 0.2 pg mL-1 with a working range spanning the physiologically relevant concentration levels in both healthy individuals and patients with sepsis, indicating the sensitivity of the sensor is suitable for the application. Further experiments helped provide a proof-of-application through the detection of IL-6 in blood plasma with no significant interference observed from PCT or the constituents of the medium. Due to the selectivity, sensitivity, straightforward operation, and low cost of production, this sensor platform has the potential for use as a traffic light sensor for the multidetection of inflammatory biomarkers for the diagnosis of sepsis and other conditions in which the rapid testing of blood biomarkers has vital clinical application

    Low-cost, facile droplet modification of screen-printed arrays for internally validated electrochemical detection of serum procalcitonin

    Get PDF
    This manuscript presents the design and facile production of screen-printed arrays (SPAs) for the internally validated determination of raised levels of serum procalcitonin (PCT). The screen-printing methodology produced SPAs with six individual working electrodes that exhibit an inter-array reproducibility of 3.64% and 5.51% for the electrochemically active surface area and heterogenous electrochemical rate constant respectively. The SPAs were modified with antibodies specific for the detection of PCT through a facile methodology, where each stage simply uses droplets incubated on the surface, allowing for their mass-production. This platform was used for the detection of PCT, achieving a linear dynamic range between 1 and 10 ng mL−1 with a sensor sensitivity of 1.35 × 10−10 NIC%/ng mL−1. The SPA produced an intra- and inter-day %RSD of 4.00 and 5.05%, with a material cost of £1.14. Internally validated human serum results (3 sample measurements, 3 control) for raised levels of PCT (>2 ng mL−1) were obtained, with no interference effects seen from CRP and IL-6. This SPA platform has the potential to offer clinicians vital information to rapidly begin treatment for “query sepsis” patients while awaiting results from more lengthy remote laboratory testing methods. Analytical ranges tested make this an ideal approach for rapid testing in specific patient populations (such as neonates or critically ill patients) in which PCT ranges are inherently wider. Due to the facile modification methods, we predict this could be used for various analytes on a single array, or the array increased further to maintain the internal validation of the system

    Assessing Syndromic Surveillance of Cardiovascular Outcomes from Emergency Department Chief Complaint Data in New York City

    Get PDF
    Prospective syndromic surveillance of emergency department visits has been used for near-real time tracking of communicable diseases to detect outbreaks or other unexpected disease clusters. The utility of syndromic surveillance for tracking cardiovascular events, which may be influenced by environmental factors and influenza, has not been evaluated. We developed and evaluated a method for tracking cardiovascular events using emergency department free-text chief complaints.There were three phases to our analysis. First we applied text processing algorithms based on sensitivity, specificity, and positive predictive value to chief complaint data reported by 11 New York City emergency departments for which ICD-9 discharge diagnosis codes were available. Second, the same algorithms were applied to data reported by a larger sample of 50 New York City emergency departments for which discharge diagnosis was unavailable. From this more complete data, we evaluated the consistency of temporal variation of cardiovascular syndromic events and hospitalizations from 76 New York City hospitals. Finally, we examined associations between particulate matter ≀2.5 ”m (PM(2.5)), syndromic events, and hospitalizations. Sensitivity and positive predictive value were low for syndromic events, while specificity was high. Utilizing the larger sample of emergency departments, a strong day of week pattern and weak seasonal trend were observed for syndromic events and hospitalizations. These time-series were highly correlated after removing the day-of-week, holiday, and seasonal trends. The estimated percent excess risks in the cold season (October to March) were 1.9% (95% confidence interval (CI): 0.6, 3.2), 2.1% (95% CI: 0.9, 3.3), and 1.8% (95%CI: 0.5, 3.0) per same-day 10 ”g/m(3) increase in PM(2.5) for cardiac-only syndromic data, cardiovascular syndromic data, and hospitalizations, respectively.Near real-time emergency department chief complaint data may be useful for timely surveillance of cardiovascular morbidity related to ambient air pollution and other environmental events
    • 

    corecore