10,719 research outputs found
Playing the God game: the perils of religious fictionalism
To what extend can someone who treat religious discourse as fictional discourse live a religious life, that is, one that is informed by that discourse? To what extent can they be integrated into a religious community in which the realist approach is dominant, or at least significantly represented? This paper explores both the possibilities and limitations, of religious fictionalism, and compares it with other non-realist approaches. Finally, a certain kind of agnostic position is presented, one which has something in common with fictionalism, and it is suggested that this latter position may offer the best way of combining religious engagement with a retreat from traditional realism
Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings
peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=inan2
Fire effects on aquatic ecosystems: an assessment of the current state of science
Fire is a prevalent feature of many landscapes and has numerous and complex effects on geological, hydrological, ecological, and economic systems. In some regions, the frequency and intensity of wildfire have increased in recent years and are projected to escalate with predicted climatic and landuse changes. In addition, prescribed burns continue to be used in many parts of the world to clear vegetation for development projects, encourage desired vegetation, and reduce fuel loads. Given the prevalence of fire on the landscape, authors of papers in this special series examine the complexities of fire as a disturbance shaping freshwater ecosystems and highlight the state of the science. These papers cover key aspects of fire effects that range from vegetation loss and recovery in watersheds to effects on hydrology and water quality with consequences for communities (from algae to fish), food webs, and ecosystem processes (e.g., organic matter subsidies, nutrient cycling) across a range of scales. The results presented in this special series of articles expand our knowledge of fire effects in different biomes, water bodies, and geographic regions, encompassing aquatic population, community, and ecosystem responses. In this overview, we summarize each paper and emphasize its contributions to knowledge on fire ecology and freshwater ecosystems. This overview concludes with a list of 7 research foci that are needed to further our knowledge of fire effects on aquatic ecosystems, including research on: 1) additional biomes and geographic regions; 2) additional habitats, including wetlands and lacustrine ecosystems; 3) different fire severities, sizes, and spatial configurations; and 4) additional response variables (e.g., ecosystem processes) 5) over long (>5 y) time scales 6) with more rigorous study designs and data analyses, and 7) consideration of the effects of fire management practices and policies on aquatic ecosystems
Metastability of Asymptotically Well-Behaved Potential Games
One of the main criticisms to game theory concerns the assumption of full
rationality. Logit dynamics is a decentralized algorithm in which a level of
irrationality (a.k.a. "noise") is introduced in players' behavior. In this
context, the solution concept of interest becomes the logit equilibrium, as
opposed to Nash equilibria. Logit equilibria are distributions over strategy
profiles that possess several nice properties, including existence and
uniqueness. However, there are games in which their computation may take time
exponential in the number of players. We therefore look at an approximate
version of logit equilibria, called metastable distributions, introduced by
Auletta et al. [SODA 2012]. These are distributions that remain stable (i.e.,
players do not go too far from it) for a super-polynomial number of steps
(rather than forever, as for logit equilibria). The hope is that these
distributions exist and can be reached quickly by logit dynamics.
We identify a class of potential games, called asymptotically well-behaved,
for which the behavior of the logit dynamics is not chaotic as the number of
players increases so to guarantee meaningful asymptotic results. We prove that
any such game admits distributions which are metastable no matter the level of
noise present in the system, and the starting profile of the dynamics. These
distributions can be quickly reached if the rationality level is not too big
when compared to the inverse of the maximum difference in potential. Our proofs
build on results which may be of independent interest, including some spectral
characterizations of the transition matrix defined by logit dynamics for
generic games and the relationship of several convergence measures for Markov
chains
A Dietary Sugarcane-Derived Polyphenol Mix Reduces the Negative Effects of Cyclic Heat Exposure on Growth Performance, Blood Gas Status, and Meat Quality in Broiler Chickens
Heat stress (HS) compromises growth performance and meat quality of broiler chickens by interrupting lipid and protein metabolism, resulting in increased oxidative damages. The experiment attempted to investigate whether dietary polyphenols (Polygain (POL)) could ameliorate the aforementioned adverse effects of HS on performance and meat quality. One hundred and twenty one day-old-male chicks were allocated to two temperature conditions, thermoneutral (TN) or HS, and fed with either a control diet (CON) or the CON plus four different doses of POL (2, 4, 6 and 10 g/kg). Heat stress caused respiratory alkalosis as evidenced by increased rectal temperature (p < 0.001) and respiration rate (p < 0.001) due to increased blood pH (p < 0.001). Heat stress decreased final body weight (p = 0.061) and breast muscle water content (p = 0.013) while POL improved both (p = 0.002 and p = 0.003, respectively). Heat stress amplified muscle damages, indicated by increased thiobarbituric acid reactive substances (p < 0.001) and reduced myofibril fragmentation index (p = 0.006) whereas POL improved both (p = 0.037 and p = 0.092, respectively). Heat stress impaired meat tenderness (p < 0.001) while POL improved it (p = 0.003). In conclusion, HS impaired growth performance and meat quality whereas POL ameliorated these responses in a dose-dependent manner, and effects of POL were evident under both temperature conditions
Gravitational Collapse and Fragmentation in Molecular Clouds with Adaptive Mesh Refinement
We describe a powerful methodology for numerical solution of 3-D
self-gravitational hydrodynamics problems with extremely high resolution. Our
method utilizes the technique of local adaptive mesh refinement (AMR),
employing multiple grids at multiple levels of resolution. These grids are
automatically and dynamically added and removed as necessary to maintain
adequate resolution. This technology allows for the solution of problems in a
manner that is both more efficient and more versatile than other fixed and
variable resolution methods. The application of AMR to simulate the collapse
and fragmentation of a molecular cloud, a key step in star formation, is
discussed. Such simulations involve many orders of magnitude of variation in
length scale as fragments form. In this paper we briefly describe the
methodology and present an illustrative application for nonisothermal cloud
collapse. We describe the numerical Jeans condition, a criterion for stability
of self-gravitational hydrodynamics problems. We show the first well-resolved
nonisothermal evolutionary sequence beginning with a perturbed dense molecular
cloud core that leads to the formation of a binary system consisting of
protostellar cores surrounded by distinct protostellar disks. The scale of the
disks, of order 100 AU, is consistent with observations of gaseous disks
surrounding single T-Tauri stars and debris disks surrounding systems such as
Pictoris.Comment: 10 pages, 6 figures (color postscript). To appear in the proceedings
of Numerical Astrophysics 1998, Tokyo, March 10-13, 199
The momentum analyticity of two-point correlators from perturbation theory and AdS/CFT
The momentum plane analyticity of two point function of a relativistic
thermal field theory at zero chemical potential is explored. A general
principle regarding the location of the singularities is extracted. In the case
of the N=4 supersymmetric Yang-Mills theory at large , a qualitative
change in the nature of the singularity (branch points versus simple poles)
from the weak coupling regime to the strong coupling regime is observed with
the aid of the AdS/CFT correspondence.Comment: 18 pages, 3 figures, typos fixed, 1 figure update
Recommended from our members
Stops making sense: translational trade-offs and stop codon reassignment
Background
Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature.
Results
In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences.
Conclusions
We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants
- …