54 research outputs found

    Effects of intragastric infusion of inosine monophosphate and l-glutamate on vagal gastric afferent activity and subsequent autonomic reflexes

    Get PDF
    In this study we investigated the effects of intragastric infusion of palatable basic taste substances (umami, sweet, and salty) on the activity of the vagal gastric afferent nerve (VGA), the vagal celiac efferent nerve (VCE), and the splanchnic adrenal efferent nerve (SAE) in anesthetized rats. To test the three selected taste groups, rats were infused with inosine monophosphate (IMP) and l-glutamate (GLU) for umami, with glucose and sucrose for sweet, and with sodium chloride (NaCl) for salty. Infusions of IMP and GLU solutions significantly increased VGA activity and induced the autonomic reflex, which activated VCE and SAE; these reflexes were abolished after sectioning of the VGA. Infusions of glucose, sucrose and NaCl solutions, conversely, had no significant effects on VGA activity. These results suggest that umami substances in the stomach send information through the VGA to the brain and play a role in the reflex regulation of visceral functions

    Nociceptors: a phylogenetic view

    Get PDF
    The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt “detect and protect” system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    p68 RNA helicase - identification of a nucleolar form and cloning of related genes containing a conserved intron in yeasts

    Get PDF
    The human p68 protein is an RNA-dependent ATPase and RNA helicase which was first identified because of its immunological cross-reaction with a viral RNA helicase, simian virus 40 large T antigen. It belongs to a recently discovered family of proteins (DEAD box proteins) that share extensive regions of amino acid sequence homology, are ubiquitous in living organisms, and are involved in many aspects of RNA metabolism, including splicing, translation, and ribosome assembly. We have shown by immunofluorescent microscopy that mammalian p68, which is excluded from the nucleoli during interphase, translocates to prenucleolar bodies during telophase. We have cloned 55% identical genes from both Schizosaccharomyces pombe and Saccharomyces cerevisiae and shown that they are essential in both yeasts. The human and yeast genes contain a large intron whose position has been precisely conserved. In S. cerevisiae, the intron is unusual both because of its size and because of its location near the 3' end of the gene. We discuss possible functional roles for such an unusual intron in an RNA helicase gene.Publisher PDFPeer reviewe

    Promoter-specific p53-dependent histone acetylation following DNA damage.

    No full text
    We have used chromatin immunoprecipitation (ChIP) to measure p53-dependent histone acetylation at the p21, MDM2, and PUMA promoters. The pattern of histone acetylation was different at each promoter. H3 and H4 acetylation increased at both the p21 and PUMA promoters in response to p53 activation, whereas there was only a minimal increase in H4 acetylation and no increase in H3 acetylation at the MDM2 promoter. The high p53 occupancy of the p21, MDM2 and PUMA promoters has been attributed to the presence of two p53 binding sites in these promoters, but mutation of the p53 binding sites in integrated p21 promoter constructs showed that the two sites in the p21 promoter do not cooperate to stabilize p53 binding. Despite 10-fold higher p53 binding to the proximal than the distal site in the p21 promoter, both sites showed similar patterns of H3 and H4 acetylation. Mutation of the binding sites showed that acetylation of the proximal, low-affinity site requires p53 binding to that site but not to the distal, high-affinity site. Since low-affinity p53 binding sites can confer strong acetylation, the DNA binding affinity in vitro is an unreliable guide to the likely importance of p53 in regulating candidate target genes in vivo.</p

    RAD001 (everolimus) improves the efficacy of replicating adenoviruses that target colon cancer.

    No full text
    Selectively replicating adenoviruses have the potential to cure cancer but have shown little efficacy in clinical trials. We have tested the ability of the mTOR kinase inhibitor RAD001 (everolimus) to enhance the response of xenografts to an oncolytic adenovirus. The virus has Tcf sites inserted in the early viral promoters and replicates selectively in cells with activation of the Wnt signaling pathway. To enhance tumor cell infection, an integrin targeting peptide (CDCRGDCFC) was inserted into the fiber gene of the virus. RAD001 combines three useful properties: it inhibits tumor cell growth directly, blocks angiogenesis, and suppresses the immune response. RAD001 does not block viral protein expression, DNA replication, or cytopathic effect in tumor cells in vitro. After 6 weeks of daily RAD001 treatment, ongoing viral DNA replication could be detected in tumor xenografts, showing that RAD001 does not inhibit virus replication in vivo. I.v. injection of virus alone produced a small delay in xenograft growth, whereas combination therapy substantially prolonged the survival of the mice. We suggest that collapsing the tumor vasculature after the initial infection traps the virus and facilitates local spread within the tumor. Unlike conventional drugs, which require continued access to the tumor through the vascular system, oncolytic viruses are in principle less sensitive to late reductions in perfusion because they are produced locally within the tumor

    p53 inactivating mutations in Chinese nasopharyngeal carcinomas

    No full text
    Previously a low frequency of p53 mutations was detected in nasopharyngeal carcinoma (NPC) using molecular techniques to screen for mutations, yet immunohistochemical staining revealed a high frequency of p53 aberrant proteins. These findings might be attributed to the occurrence of p53 mutations outside the common hot spots and/or the inactivation of the protein through interactions with cellular or viral proteins. Using a previously established simple and sensitive p53 yeast functional assay, we blindly screened 25 nasopharyngeal biopsies for p53 mutations from exons 4 to 11, p53 was mutated in 27.3\% of NPC specimens and in 0\% of the nasopharyngeal biopsies from patients with non-malignant diseases. Two p53 mutations were detected in exon 7 and two were detected in exon 8. Interestingly, the exon 8 mutations observed in NPC lie in codons which appear to be hot spots for mutations in other head and neck cancers. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved

    The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor

    No full text
    The DEAD box RNA helicase, p68, has been implicated in various cellular processes and has been shown to possess transcriptional coactivator function. Here, we show that p68 potently synergises with the p53 tumour suppressor protein to stimulate transcription from p53-dependent promoters and that endogenous p68 and p53 co-immunoprecipitate from nuclear extracts. Strikingly, RNAi suppression of p68 inhibits p53 target gene expression in response to DNA damage, as well as p53-dependent apoptosis, but does not influence p53 stabilisation or expression of non-p53-responsive genes. We also show, by chromatin immunoprecipitation, that p68 is recruited to the p21 promoter in a p53-dependent manner, consistent with a role in promoting transcriptional initiation. Interestingly, p68 knock-down does not significantly affect NF-κB activation, suggesting that the stimulation of p53 transcriptional activity is not due to a general transcription effect. This study represents the first report of the involvement of an RNA helicase in the p53 response, and highlights a novel mechanism by which p68 may act as a tumour cosuppressor in governing p53 transcriptional activity
    corecore