99 research outputs found
Comparison of age-specific cataract prevalence in two population-based surveys 6 years apart
BACKGROUND: In this study, we aimed to compare age-specific cortical, nuclear and posterior subcapsular (PSC) cataract prevalence in two surveys 6 years apart. METHODS: The Blue Mountains Eye Study examined 3654 participants (82.4% of those eligible) in cross-section I (1992–4) and 3509 participants (75.1% of survivors and 85.2% of newly eligible) in cross-section II (1997–2000, 66.5% overlap with cross-section I). Cataract was assessed from lens photographs following the Wisconsin Cataract Grading System. Cortical cataract was defined if cortical opacity comprised ≥ 5% of lens area. Nuclear cataract was defined if nuclear opacity ≥ Wisconsin standard 4. PSC was defined if any present. Any cataract was defined to include persons who had previous cataract surgery. Weighted kappa for inter-grader reliability was 0.82, 0.55 and 0.82 for cortical, nuclear and PSC cataract, respectively. We assessed age-specific prevalence using an interval of 5 years, so that participants within each age group were independent between the two surveys. RESULTS: Age and gender distributions were similar between the two populations. The age-specific prevalence of cortical (23.8% in 1(st), 23.7% in 2(nd)) and PSC cataract (6.3%, 6.0%) was similar. The prevalence of nuclear cataract increased slightly from 18.7% to 23.9%. After age standardization, the similar prevalence of cortical (23.8%, 23.5%) and PSC cataract (6.3%, 5.9%), and the increased prevalence of nuclear cataract (18.7%, 24.2%) remained. CONCLUSION: In two surveys of two population-based samples with similar age and gender distributions, we found a relatively stable cortical and PSC cataract prevalence over a 6-year period. The increased prevalence of nuclear cataract deserves further study
Circulating markers of arterial thrombosis and late-stage age-related macular degeneration: a case-control study.
PURPOSE: The aim of this study was to examine the relation of late-stage age-related macular degeneration (AMD) with markers of systemic atherothrombosis. METHODS: A hospital-based case-control study of AMD was undertaken in London, UK. Cases of AMD (n=81) and controls (n=77) were group matched for age and sex. Standard protocols were used for colour fundus photography and to classify AMD; physical examination included height, weight, history of or treatment for vascular-related diseases and smoking status. Blood samples were taken for measurement of fibrinogen, factor VIIc (FVIIc), factor VIIIc, prothrombin fragment F1.2 (F1.2), tissue plasminogen activator, and von Willebrand factor. Odds ratios from logistic regression analyses of each atherothrombotic marker with AMD were adjusted for age, sex, and established cardiovascular disease risk factors, including smoking, blood pressure, body mass index, and total cholesterol. RESULTS: After adjustment FVIIc and possibly F1.2 were inversely associated with the risk of AMD; per 1 standard deviation increase in these markers the odds ratio were, respectively, 0.62 (95% confidence interval 0.40, 0.95) and 0.71 (0.46, 1.09). None of the other atherothrombotic risk factors appeared to be related to AMD status. There was weak evidence that aspirin is associated with a lower risk of AMD. CONCLUSIONS: This study does not provide strong evidence of associations between AMD and systematic markers of arterial thrombosis, but the potential effects of FVIIc, and F1.2 are worthy of further investigation
Visual Acuity and Associated Factors. The Central India Eye and Medical Study
Visual acuity is a major parameter for quality of vision and quality of life. Information on visual acuity and its associated factors in rural societies almost untouched by any industrialization is mostly non-available. It was, therefore, the purpose of our study to determine the distribution of visual acuity and its associated factors in a rural population not marked influenced by modern lifestyle. The population-based Central India Eye and Medical Study included 4711 subjects (aged 30+ years), who underwent a detailed ophthalmologic examination including visual acuity measurement. Visual acuity measurements were available for 4706 subjects with a mean age of 49.5±13.4 years (range: 30–100 years). BCVA decreased significantly (P<0.001) from the moderately hyperopic group (0.08±0.15 logMAR) to the emmetropic group (0.16±0.52 logMAR), the moderately myopic group (0.28±0.33 logMAR), the highly hyperopic group (0.66±0.62 logMAR) and finally the highly myopic group (1.32±0.92 logMAR). In multivariate analysis, BCVA was significantly associated with the systemic parameters of lower age (P<0.001), higher level of education (P<0.001), higher body stature (P<0.001) and higher body mass index (P<0.001), and with the ophthalmic parameters of more hyperopic refractive error (spherical equivalent) (P<0.001), shorter axial length (P<0.001), lower degree of nuclear cataract (P<0.001), and lower intraocular pressure (P = 0.006). The results suggest that in the rural population of Central India, major determinants of visual acuity were socioeconomic background, body stature and body mass index, age, refractive error, cataract and intraocular pressure
Disease surveillance using a hidden Markov model
<p>Abstract</p> <p>Background</p> <p>Routine surveillance of disease notification data can enable the early detection of localised disease outbreaks. Although hidden Markov models (HMMs) have been recognised as an appropriate method to model disease surveillance data, they have been rarely applied in public health practice. We aimed to develop and evaluate a simple flexible HMM for disease surveillance which is suitable for use with sparse small area count data and requires little baseline data.</p> <p>Methods</p> <p>A Bayesian HMM was designed to monitor routinely collected notifiable disease data that are aggregated by residential postcode. Semi-synthetic data were used to evaluate the algorithm and compare outbreak detection performance with the established Early Aberration Reporting System (EARS) algorithms and a negative binomial cusum.</p> <p>Results</p> <p>Algorithm performance varied according to the desired false alarm rate for surveillance. At false alarm rates around 0.05, the cusum-based algorithms provided the best overall outbreak detection performance, having similar sensitivity to the HMMs and a shorter average time to detection. At false alarm rates around 0.01, the HMM algorithms provided the best overall outbreak detection performance, having higher sensitivity than the cusum-based Methods and a generally shorter time to detection for larger outbreaks. Overall, the 14-day HMM had a significantly greater area under the receiver operator characteristic curve than the EARS C3 and 7-day negative binomial cusum algorithms.</p> <p>Conclusion</p> <p>Our findings suggest that the HMM provides an effective method for the surveillance of sparse small area notifiable disease data at low false alarm rates. Further investigations are required to evaluation algorithm performance across other diseases and surveillance contexts.</p
Movement and habitat use of the snapping turtle in an urban landscape
In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems
Utilizing Targeted Gene Therapy with Nanoparticles Binding Alpha v Beta 3 for Imaging and Treating Choroidal Neovascularization
Purpose: The integrin αvβ3 is differentially expressed on neovascular endothelial cells. We investigated whether a novel intravenously injectable αvβ3 integrin-ligand coupled nanoparticle (NP) can target choroidal neovascular membranes (CNV) for imaging and targeted gene therapy. Methods: CNV lesions were induced in rats using laser photocoagulation. The utility of NP for in vivo imaging and gene delivery was evaluated by coupling the NP with a green fluorescing protein plasmid (NP-GFPg). Rhodamine labeling (Rd-NP) was used to localize NP in choroidal flatmounts. Rd-NP-GFPg particles were injected intravenously on weeks 1, 2, or 3. In the treatment arm, rats received NP containing a dominant negative Raf mutant gene (NP-ATPμ-Raf) on days 1, 3, and 5. The change in CNV size and leakage, and TUNEL positive cells were quantified. Results: GFP plasmid expression was seen in vivo up to 3 days after injection of Rd-NP-GFPg. Choroidal flatmounts confirmed the localization of the NP and the expression of GFP plasmid in the CNV. Treating the CNV with NP-ATPμ-Raf decreased the CNV size by 42% (P<0.001). OCT analysis revealed that the reduction of CNV size started on day 5 and reached statistical significance by day 7. Fluorescein angiography grading showed significantly less leakage in the treated CNV (P<0.001). There were significantly more apoptotic (TUNEL-positive) nuclei in the treated CNV. Conclusion: Systemic administration of αvβ3 targeted NP can be used to label the abnormal blood vessels of CNV for imaging. Targeted gene delivery with NP-ATPμ-Raf leads to a reduction in size and leakage of the CNV by induction of apoptosis in the CNV
Modelling the Genetic Risk in Age-Related Macular Degeneration
Late-stage age-related macular degeneration (AMD) is a common sight-threatening disease of the central retina affecting approximately 1 in 30 Caucasians. Besides age and smoking, genetic variants from several gene loci have reproducibly been associated with this condition and likely explain a large proportion of disease. Here, we developed a genetic risk score (GRS) for AMD based on 13 risk variants from eight gene loci. The model exhibited good discriminative accuracy, area-under-curve (AUC) of the receiver-operating characteristic of 0.820, which was confirmed in a cross-validation approach. Noteworthy, younger AMD patients aged below 75 had a significantly higher mean GRS (1.87, 95% CI: 1.69–2.05) than patients aged 75 and above (1.45, 95% CI: 1.36–1.54). Based on five equally sized GRS intervals, we present a risk classification with a relative AMD risk of 64.0 (95% CI: 14.11–1131.96) for individuals in the highest category (GRS 3.44–5.18, 0.5% of the general population) compared to subjects with the most common genetic background (GRS −0.05–1.70, 40.2% of general population). The highest GRS category identifies AMD patients with a sensitivity of 7.9% and a specificity of 99.9% when compared to the four lower categories. Modeling a general population around 85 years of age, 87.4% of individuals in the highest GRS category would be expected to develop AMD by that age. In contrast, only 2.2% of individuals in the two lowest GRS categories which represent almost 50% of the general population are expected to manifest AMD. Our findings underscore the large proportion of AMD cases explained by genetics particularly for younger AMD patients. The five-category risk classification could be useful for therapeutic stratification or for diagnostic testing purposes once preventive treatment is available
Orally Active Multi-Functional Antioxidants Are Neuroprotective in a Rat Model of Light-Induced Retinal Damage
Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8) to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD
CFH, C3 and ARMS2 Are Significant Risk Loci for Susceptibility but Not for Disease Progression of Geographic Atrophy Due to AMD
Age-related macular degeneration (AMD) is a prevalent cause of blindness in Western societies. Variants in the genes encoding complement factor H (CFH), complement component 3 (C3) and age-related maculopathy susceptibility 2 (ARMS2) have repeatedly been shown to confer significant risks for AMD; however, their role in disease progression and thus their potential relevance for interventional therapeutic approaches remains unknown. Here, we analyzed association between variants in CFH, C3 and ARMS2 and disease progression of geographic atrophy (GA) due to AMD. A quantitative phenotype of disease progression was computed based on longitudinal observations by fundus autofluorescence imaging. In a subset of 99 cases with pure bilateral GA, variants in CFH (Y402H), C3 (R102G), and ARMS2 (A69S) are associated with disease (P = 1.6x10(-9), 3.2x10(-3), and P = 2.6x10(-12), respectively) when compared to 612 unrelated healthy control individuals. In cases, median progression rate of GA over a mean follow-up period of 3.0 years was 1.61 mm(2)/year with high concordance between fellow eyes. No association between the progression rate and any of the genetic risk variants at the three loci was observed (P>0.13). This study confirms that variants at CFH, C3, and ARMS2 confer significant risks for GA due to AMD. In contrast, our data indicate no association of these variants with disease progression which may have important implications for future treatment strategies. Other, as yet unknown susceptibilities may influence disease progression
- …