36 research outputs found

    <i>Trypanosoma brucei</i> DHRF-TS revisited:characterisation of a bifunctional and highly unstable recombinant dihydrofolate reductase-thymidylate synthase

    Get PDF
    <div><p>Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA<sup>-</sup> <i>Escherichia coli</i>, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (<i>K</i><sub>i</sub> 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (<i>K</i><sub>i</sub> 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.</p></div

    Receptor conversion in distant breast cancer metastases

    Get PDF
    Introduction: When breast cancer patients develop distant metastases, the choice of systemic treatment is usually based on tissue characteristics of the primary tumor as determined by immunohistochemistry (IHC) and/or molecular analysis. Several previous studies have shown that the immunophenotype of distant breast cancer metastases may be different from that of the primary tumor (receptor conversion), leading to inappropriate choice of systemic treatment. The studies published so far are however small and/or methodologically suboptimal. Therefore, definite conclusions that may change clinical practice could not yet be drawn. We therefore aimed to study receptor conversion for estrogen receptor alpha (ER alpha), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in a large group of distant (non-bone) breast cancer metastases by re-staining all primary tumors and metastases with current optimal immunohistochemical and in situ hybridization methods on full sections. Methods: A total of 233 distant breast cancer metastases from different sites (76 skin, 63 liver, 43 lung, 44 brain and 7 gastro-intestinal) were IHC stained for ER alpha, PR and HER2, and expression was compared to that of the primary tumor. HER2 in situ hybridization (ISH) was done in cases of IHC conversion or when primary tumors or metastases showed an IHC 2+ result. Results: Using a 10% threshold, receptor conversion by IHC for ER alpha, PR occurred in 10.3%, 30.0% of patients, respectively. In 10.7% of patients, conversion from ER+ or PR+ to ER-/PR- and in 3.4% from ER-/PR- to ER+ or PR+ was found. Using a 1% threshold, ER alpha and PR conversion rates were 15.1% and 32.6%. In 12.4% of patients conversion from ER+ or PR+ to ER-/PR-, and 8.2% from ER-/PR-to ER+ or PR+ occurred. HER2 conversion occurred in 5.2%. Of the 12 cases that showed HER2 conversion by IHC, 5 showed also conversion by ISH. One further case showed conversion by ISH, but not by IHC. Conversion was mainly from positive in the primary tumor to negative in the metastases for ER alpha and PR, while HER2 conversion occurred equally both ways. PR conversion occurred significantly more often in liver, brain and gastro-intestinal metastases. Conclusions: Receptor conversion by immunohistochemistry in (non-bone) distant breast cancer metastases does occur, is relatively uncommon for ER alpha and HER2, and is more frequent for PR, especially in brain, liver and gastrointestinal metastase

    Pre-operative pulmonary assessment for patients with hip fracture

    Get PDF
    Hip fracture is a common injury among the elderly. Although patients who receive hip fracture surgery carry the best functional recovery compared to other treatment modalities, the presence of postoperative pulmonary complications, such as atelectasis, pneumonia, and pulmonary thromboembolism, may contribute to increased length of hospital stay, perioperative morbidity, and mortality. This review aims to provide evidence-based recommendations for preoperative assessment and perioperative strategies to reduce the risk of pulmonary complications after hip fracture surgery. Clinical assessment and basic laboratory results are sufficient to stratify the risk of postoperative pulmonary complications. Well-documented risk factors for pulmonary complications include advanced age, poor general health status, current infections, pre-existing cardiopulmonary diseases, hypoalbuminemia, and impaired renal function. Apart from optimizing the patient's medical conditions, interventions such as lung expansion maneuvers and thromboprophylaxis have been proven to be effective in reducing the risk of pulmonary complications after hip fracture surgery

    Senile onset Tourette's syndrome

    No full text

    Age- and sex-dependent distribution of persistent organochlorine pollutants in urban foxes

    Get PDF
    The colonization of urban and suburban habitats by red foxes (Vulpes vulpes) provides a novel sentinel species to monitor the spread of anthropogenic pollutants in densely populated human settlements. Here, red foxes were collected in the municipal territory of Zürich, Switzerland, and their perirenal adipose tissue was examined for persistent organochlorine residues. This pilot study revealed an unexpected pattern of contamination by polychlorinated biphenyls (PCBs), with significantly higher levels of the predominant congeners PCB-138, PCB-153, and PCB-180 in juvenile foxes relative to adult animals. Further data analysis demonstrated that the observed difference was attributable to an age-dependent reduction of PCB concentrations in females, whereas male foxes retained approximately the same PCB burden throughout their life span. A similar sex-related bias between population members has been observed, primarily in marine mammals. Interestingly, the reduction of organochlorine contents with progressive age is reminiscent of human studies, where an extensive maternal transfer of xenobiotics to the offspring has been shown to result in increased exposure levels of infants relative to adults. To our knowledge, this is the first example of an urban wildlife species that faithfully reflects the dynamic distribution of toxic contaminants in the corresponding human population. Suburban and urban foxes occupy habitats in close proximity to humans, depend on anthropogenic food supplies, are relatively long-lived and readily available for sampling, can be easily aged and sexed, have a limited home range, and, therefore, meet several important requirements to serve as a surrogate species for the assessment of toxic health hazards

    The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease.

    No full text
    The Saccharomyces cerevisiae targets of rapamycin, TOR1 and TOR2, signal activation of cell growth in response to nutrient availability. Loss of TOR or rapamycin treatment causes yeast cells to arrest growth in early G1 and to express several other physiological properties of starved (G0) cells. As part of this starvation response, high affinity amino acid permeases such as the tryptophan permease TAT2 are targeted to the vacuole and degraded. Here we show that the TOR signalling pathway phosphorylates the Ser/Thr kinase NPR1 and thereby inhibits the starvation-induced turnover of TAT2. Overexpression of NPR1 inhibits growth and induces the degradation of TAT2, whereas loss of NPR1 confers resistance to rapamycin and to FK506, an inhibitor of amino acid import. NPR1 is controlled by TOR and the type 2A phosphatase-associated protein TAP42. First, overexpression of NPR1 is toxic only when TOR function is reduced. Secondly, NPR1 is rapidly dephosphorylated in the absence of TOR. Thirdly, NPR1 dephosphorylation does not occur in a rapamycin-resistant tap42 mutant. Thus, the TOR nutrient signalling pathway also controls growth by inhibiting a stationary phase (G0) programme. The control of NPR1 by TOR is analogous to the control of p70 s6 kinase and 4E-BP1 by mTOR in mammalian cells
    corecore