3,241 research outputs found
Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation
We carry out the holographic renormalization of Einstein-Maxwell theory with
curvature-squared corrections. In particular, we demonstrate how to construct
the generalized Gibbons-Hawking surface term needed to ensure a perturbatively
well-defined variational principle. This treatment ensures the absence of ghost
degrees of freedom at the linearized perturbative order in the
higher-derivative corrections. We use the holographically renormalized action
to study the thermodynamics of R-charged black holes with higher derivatives
and to investigate their mass to charge ratio in the extremal limit. In five
dimensions, there seems to be a connection between the sign of the higher
derivative couplings required to satisfy the weak gravity conjecture and that
violating the shear viscosity to entropy bound. This is in turn related to
possible constraints on the central charges of the dual CFT, in particular to
the sign of c-a.Comment: 30 pages. v2: references added, some equations simplifie
Massive Gravity Theories and limits of Ghost-free Bigravity models
We construct a class of theories which extend New Massive Gravity to higher
orders in curvature in any dimension. The lagrangians arise as limits of a new
class of bimetric theories of Lovelock gravity, which are unitary theories free
from the Boulware-Deser ghost. These Lovelock bigravity models represent the
most general non-chiral ghost-free theories of an interacting massless and
massive spin-two field in any dimension. The scaling limit is taken in such a
way that unitarity is explicitly broken, but the Boulware-Deser ghost remains
absent. This automatically implies the existence of a holographic -theorem
for these theories. We also show that the Born-Infeld extension of New Massive
Gravity falls into our class of models demonstrating that this theory is also
free of the Boulware-Deser ghost. These results extend existing connections
between New Massive Gravity, bigravity theories, Galileon theories and
holographic -theorems.Comment: 11+5 page
Corner contributions to holographic entanglement entropy
The entanglement entropy of three-dimensional conformal field theories
contains a universal contribution coming from corners in the entangling
surface. We study these contributions in a holographic framework and, in
particular, we consider the effects of higher curvature interactions in the
bulk gravity theory. We find that for all of our holographic models, the corner
contribution is only modified by an overall factor but the functional
dependence on the opening angle is not modified by the new gravitational
interactions. We also compare the dependence of the corner term on the new
gravitational couplings to that for a number of other physical quantities, and
we show that the ratio of the corner contribution over the central charge
appearing in the two-point function of the stress tensor is a universal
function for all of the holographic theories studied here. Comparing this
holographic result to the analogous functions for free CFT's, we find fairly
good agreement across the full range of the opening angle. However, there is a
precise match in the limit where the entangling surface becomes smooth, i.e.,
the angle approaches , and we conjecture the corresponding ratio is a
universal constant for all three-dimensional conformal field theories. In this
paper, we expand on the holographic calculations in our previous letter
arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match
published version, typos fixe
Recommended from our members
Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression.
Several studies have proposed that brain glutamate signaling abnormalities and glial pathology have a role in the etiology of major depressive disorder (MDD). These conclusions were primarily drawn from post-mortem studies in which forebrain brain regions were examined. The locus coeruleus (LC) is the primary source of extensive noradrenergic innervation of the forebrain and as such exerts a powerful regulatory role over cognitive and affective functions, which are dysregulated in MDD. Furthermore, altered noradrenergic neurotransmission is associated with depressive symptoms and is thought to have a role in the pathophysiology of MDD. In the present study we used laser-capture microdissection (LCM) to selectively harvest LC tissue from post-mortem brains of MDD patients, patients with bipolar disorder (BPD) and from psychiatrically normal subjects. Using microarray technology we examined global patterns of gene expression. Differential mRNA expression of select candidate genes was then interrogated using quantitative real-time PCR (qPCR) and in situ hybridization (ISH). Our findings reveal multiple signaling pathway alterations in the LC of MDD but not BPD subjects. These include glutamate signaling genes, SLC1A2, SLC1A3 and GLUL, growth factor genes FGFR3 and TrkB, and several genes exclusively expressed in astroglia. Our data extend previous findings of altered glutamate, astroglial and growth factor functions in MDD for the first time to the brainstem. These findings indicate that such alterations: (1) are unique to MDD and distinguishable from BPD, and (2) affect multiple brain regions, suggesting a whole-brain dysregulation of such functions
Viscosity Bound and Causality in Superfluid Plasma
It was argued by Brigante et.al that the lower bound on the ratio of the
shear viscosity to the entropy density in strongly coupled plasma is translated
into microcausality violation in the dual gravitational description. Since
transport properties of the system characterize its infrared dynamics, while
the causality of the theory is determined by its ultraviolet behavior, the
viscosity bound/microcausality link should not be applicable to theories that
undergo low temperature phase transitions. We present an explicit model of
AdS/CFT correspondence that confirms this fact.Comment: 27 pages, 5 figures. References added, typos fixe
Black Holes in Quasi-topological Gravity
We construct a new gravitational action which includes cubic curvature
interactions and which provides a useful toy model for the holographic study of
a three parameter family of four- and higher-dimensional CFT's. We also
investigate the black hole solutions of this new gravity theory. Further we
examine the equations of motion of quasi-topological gravity. While the full
equations in a general background are fourth-order in derivatives, we show that
the linearized equations describing gravitons propagating in the AdS vacua
match precisely the second-order equations of Einstein gravity.Comment: 33 pages, 4 figures; two references adde
The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections
The weak gravity conjecture and the shear viscosity to entropy density bound
place constraints on low energy effective field theories that may help to
distinguish which theories can be UV completed. Recently, there have been
suggestions of a possible correlation between the two constraints. In some
interesting cases, the behavior was precisely such that the conjectures were
mutually exclusive. Motivated by these works, we study the mass to charge and
shear viscosity to entropy density ratios for charged AdS5 black branes, which
are holographically dual to four-dimensional CFTs at finite temperature. We
study a family of four-derivative and six-derivative perturbative corrections
to these backgrounds. We identify the region in parameter space where the two
constraints are satisfied and in particular find that the inclusion of the
next-to-leading perturbative correction introduces wider possibilities for the
satisfaction of both constraints.Comment: 24 pages, 6 figures, v2: published version, refs added, minor
clarificatio
Massive Quantum Liquids from Holographic Angel's Trumpets
We explore the small-temperature regime in the deconfined phase of massive
fundamental matter at finite baryon number density coupled to the 3+1
dimensional N=4 SYM theory. In this setting, we can demonstrate a new type of
non-trivial temperature-independent scaling solutions for the probe brane
embeddings. Focusing mostly on matter supported in 2+1 dimensions, the
thermodynamics indicate that there is a quantum liquid with interesting
density-dependent low-temperature physics. We also comment about 3+1 and 1+1
dimensional systems, where we further find for example a new thermodynamic
instability.Comment: 18+1 pages, 6 figures; replaced fig. 6 and comments in sec. 5.2;
minor explanations added and typos fixed, final version published in JHEP
(modulo fig. 3); factor of \sqrt{\lambda} and corresponding comments fixe
Meson Thermalization in Various Dimensions
In gauge/gravity duality framework the thermalization of mesons in strongly
coupled (p+1)-dimensional gauge theories is studied for a general Dp-Dq system,
q>=p, using the flavour Dq-brane as a probe. Thermalization corresponds to the
horizon formation on the flavour Dq-brane. We calculate the thermalization
time-scale due to a time-dependent change in the baryon number chemical
potential, baryon injection in the field theory. We observe that for such a
general system it has a universal behaviour depending only on the t'Hooft
coupling constant and the two parameters which describe how we inject baryons
into the system. We show that this universal behaviour is independent of the
details of the theory whether it is conformal and/or supersymmetric.Comment: 26 pages, 2 figure
Lovelock theories, holography and the fate of the viscosity bound
We consider Lovelock theories of gravity in the context of AdS/CFT. We show
that, for these theories, causality violation on a black hole background can
occur well in the interior of the geometry, thus posing more stringent
constraints than were previously found in the literature. Also, we find that
instabilities of the geometry can appear for certain parameter values at any
point in the geometry, as well in the bulk as close to the horizon. These new
sources of causality violation and instability should be related to CFT
features that do not depend on the UV behavior. They solve a puzzle found
previously concerning unphysical negative values for the shear viscosity that
are not ruled out solely by causality restrictions. We find that, contrary to
previous expectations, causality violation is not always related to positivity
of energy. Furthermore, we compute the bound for the shear viscosity to entropy
density ratio of supersymmetric conformal field theories from d=4 till d=10 -
i.e., up to quartic Lovelock theory -, and find that it behaves smoothly as a
function of d. We propose an approximate formula that nicely fits these values
and has a nice asymptotic behavior when d goes to infinity for any Lovelock
gravity. We discuss in some detail the latter limit. We finally argue that it
is possible to obtain increasingly lower values for the shear viscosity to
entropy density ratio by the inclusion of more Lovelock terms.Comment: 42 pages, 17 figures, JHEP3.cls. v2: reference adde
- …