537 research outputs found

    Simultaneous paralogue knockout using a CRISPR-concatemer in mouse small intestinal organoids

    Get PDF
    Approaches based on genetic modification have been invaluable for investigating a wide array of biological processes, with gain- and loss-of-function approaches frequently used to investigate gene function. However, the presence of paralogues, and hence possible genetic compensation, for many genes necessitates the knockout (KO) of all paralogous genes in order to observe clear phenotypic change. CRISPR technology, the most recently described tool for gene editing, can generate KOs with unprecedented ease and speed and has been used in adult stem cell-derived organoids for single gene knockout, gene knock-in and gene correction. However, the simultaneous targeting of multiple genes in organoids by CRISPR technology has not previously been described. Here we describe a rapid, scalable and cost effective method for generating double knockouts in organoids. By concatemerizing multiple gRNA expression cassettes, we generated a ‘gRNA concatemer vector’. Our method allows the rapid assembly of annealed synthetic DNA oligos into the final vector in a single step. This approach facilitates simultaneous delivery of multiple gRNAs to allow up to 4 gene KO in one step, or potentially to increase the efficiency of gene knockout by providing multiple gRNAs targeting one gene. As a proof of concept, we knocked out negative regulators of the Wnt pathway in small intestinal organoids, thereby removing their growth dependence on the exogenous Wnt enhancer, R-spondin1.A.A-R. is supported by the Medical Research Council (MRC), A.M.is supported by Wntsapp (Marie Curie ITN) and B-K.K. and R.M. are supported by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society [101241/Z/13/Z] and receive support through a core grant from the Wellcome Trust and MRC to the WT-MRC Cambridge Stem Cell Institute

    Lumbar spine and total-body dual-energy X-ray absorptiometry in children with severe neurological impairment and intellectual disability: a pilot study of artefacts and disrupting factors

    Get PDF
    Background Children with severe neurological impairment and intellectual disability (ID) are susceptible for developing low bone mineral density (BMD) and fractures. BMD is generally measured with dual-energy X-ray absorptiometry (DXA). Objective To describe the occurrence of factors that may influence the feasibility of DXA and the accuracy of DXA outcome in children with severe neurological impairment and ID. Materials and methods Based on literature and expert opinion, a list of disrupting factors was developed. Occurrence of these factors was assessed in 27 children who underwent DXA measurement. Results Disrupting factors that occurred most frequently were movement during measurement (82%), aberrant body composition (67%), small length for age (56%) and scoliosis (37%). The number of disrupting factors per child was mean 5.3 (range 1-8). No correlation was found between DXA outcomes and the number of disrupting factors. Conclusion Factors that may negatively influence the accuracy of DXA outcome are frequently present in children with severe neurological impairment and ID. No systematic deviation of DXA outcome in coherence with the amount of disrupting factors was found, but physicians should be aware of the possible influence of disrupting factors on the accuracy of DXA

    Detection of Massive Forming Galaxies at Redshifts Greater than One

    Get PDF
    The complex problem of when and how galaxies formed has not until recently been susceptible of direct attack. It has been known for some time that the excessive number of blue galaxies counted at faint magnitudes implies that a considerable fraction of the massive star formation in the universe occurred at z < 3, but, surprisingly, spectroscopic studies of galaxies down to a B magnitude of 24 found little sign of the expected high-z progenitors of current massive galaxies, but rather, in large part, small blue galaxies at modest redshifts z \sim 0.3. This unexpected population has diverted attention from the possibility that early massive star-forming galaxies might also be found in the faint blue excess. From KECK spectroscopic observations deep enough to encompass a large population of z > 1 field galaxies, we can now show directly that in fact these forming galaxies are present in substantial numbers at B \sim 24, and that the era from redshifts 1 to 2 was clearly a major period of galaxy formation. These z > 1 galaxies have very unusual morphologies as seen in deep HST WFPC2 images.Comment: 10 pages LaTeX + 5 PostScript figures in uuencoded gzipped tar file; aasms4.sty, flushrt.sty, overcite.sty (the two aastex4.0 and overcite.sty macros are available from xxx.lanl.gov) Also available (along with style files) via anonymous ftp to ftp://hubble.ifa.hawaii.edu/pub/preprints . E-print version of paper adds citation cross-references to other archived e-prints, where available. To appear in Nature October 19, 199

    A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer

    Get PDF
    This protocol describes the steps for cloning multiple single guide RNAs into one guide RNA concatemer vector, which is of particular use in creating multi-gene knockouts using CRISPR/Cas9 technology. The generation of double knockouts in intestinal organoids is shown as a possible application of this method.A.M. is supported by Wntsapp (Marie Curie ITN), A.A-R. is supported by the Medical Research Council (MRC), and B-K.K. and R.M. are supported by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society [101241/Z/13/Z] and receive support through a core grant from the Wellcome Trust and MRC to the Wellcome Trust - MRC Cambridge Stem Cell Institute

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    New Alzheimer Amyloid β Responsive Genes Identified in Human Neuroblastoma Cells by Hierarchical Clustering

    Get PDF
    Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Aβ42, in contrast to Aβ40, is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Aβ40 and Aβ42 levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Aβ40 and Aβ42 levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Aβ42/Aβ40 ratio. Importantly however, an increased Aβ42/Aβ40 ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Aβ42/Aβ40 ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Aβ42/Aβ40 ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes

    Pediatric DXA: technique and interpretation

    Get PDF
    This article reviews dual X-ray absorptiometry (DXA) technique and interpretation with emphasis on the considerations unique to pediatrics. Specifically, the use of DXA in children requires the radiologist to be a “clinical pathologist” monitoring the technical aspects of the DXA acquisition, a “statistician” knowledgeable in the concepts of Z-scores and least significant changes, and a “bone specialist” providing the referring clinician a meaningful context for the numeric result generated by DXA. The patient factors that most significantly influence bone mineral density are discussed and are reviewed with respect to available normative databases. The effects the growing skeleton has on the DXA result are also presented. Most important, the need for the radiologist to be actively involved in the technical and interpretive aspects of DXA is stressed. Finally, the diagnosis of osteoporosis should not be made on DXA results alone but should take into account other patient factors

    Bacterial Inactivation of Wound Infection in a Human Skin Model by Liquid-Phase Discharge Plasma

    Get PDF
    Background: We investigate disinfection of a reconstructed human skin model contaminated with biofilm-formative Staphylococcus aureus employing plasma discharge in liquid. Principal Findings: We observed statistically significant 3.83-log10 (p,0.001) and 1.59-log10 (p,0.05) decreases in colony forming units of adherent S. aureus bacteria and 24 h S. aureus biofilm culture with plasma treatment. Plasma treatment was associated with minimal changes in histological morphology and tissue viability determined by means of MTT assay. Spectral analysis of the plasma discharge indicated the presence of highly reactive atomic oxygen radicals (777 nm and 844 nm) and OH bands in the UV region. The contribution of these and other plasma-generated agents and physical conditions to the reduction in bacterial load are discussed. Conclusions: These findings demonstrate the potential of liquid plasma treatment as a potential adjunct therapy for chronic wounds

    Incense smoke: clinical, structural and molecular effects on airway disease

    Get PDF
    In Asian countries where the Buddhism and Taoism are mainstream religions, incense burning is a daily practice. A typical composition of stick incense consists of 21% (by weight) of herbal and wood powder, 35% of fragrance material, 11% of adhesive powder, and 33% of bamboo stick. Incense smoke (fumes) contains particulate matter (PM), gas products and many organic compounds. On average, incense burning produces particulates greater than 45 mg/g burned as compared to 10 mg/g burned for cigarettes. The gas products from burning incense include CO, CO2, NO2, SO2, and others. Incense burning also produces volatile organic compounds, such as benzene, toluene, and xylenes, as well as aldehydes and polycyclic aromatic hydrocarbons (PAHs). The air pollution in and around various temples has been documented to have harmful effects on health. When incense smoke pollutants are inhaled, they cause respiratory system dysfunction. Incense smoke is a risk factor for elevated cord blood IgE levels and has been indicated to cause allergic contact dermatitis. Incense smoke also has been associated with neoplasm and extracts of particulate matter from incense smoke are found to be mutagenic in the Ames Salmonella test with TA98 and activation. In order to prevent airway disease and other health problem, it is advisable that people should reduce the exposure time when they worship at the temple with heavy incense smokes, and ventilate their house when they burn incense at home
    corecore