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Abstract
In this paper, we study an optimal portfolio, consumption-leisure and retirement
choice problem for an infinitely lived economic agent with a CES utility function.
Using the dynamic programming method, we obtain the value function and optimal
investment, consumption, leisure, and retirement strategies in analytic form.
Numerically we observe that the threshold retirement wealth level is an increasing
function with respect to the elasticity of substitution.
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1 Introduction
We consider an optimal portfolio and consumption-leisure choice problem of an infinitely
lived economic agent with a voluntary retirement option and a CES utility function of con-
sumption and leisure. The agent can choose her labor supply flexibly above a certain mini-
mum level in accordance with the trade-off between utility from leisure and labor income.
The economic agent receives labor income proportional to the amount of labor supplied
before retirement and enjoys full leisure after retirement at the cost of labor income.

Bodie et al. [] investigated the influence of the labor supply flexibility on portfolio and
consumption choice under the lifetime portfolio and consumption choice model of Mer-
ton [, ]. Farhi and Panageas [] studied the optimal portfolio, consumption and retire-
ment choice problem of an economic agent with a Cobb-Douglas utility function and a
binomial leisure rate process (l before retirement and l̄ after retirement) using the mar-
tingale method. Shin [] solved the problem using the dynamic programming method,
and Koo et al. [] extended the model by allowing the leisure rate process to be chosen
flexibly, also using the dynamic programming method. Borrowing constraints have sig-
nificant effects on an economic agent’s optimal portfolio, consumption and retirement
choice, and this is well documented in the literature, for example, Dybvig and Liu [].
Barucci and Marazzina [] also considered borrowing constraints with stochastic labor
income in solving optimal consumption, investment, labor supply and retirement choice
problem through a duality approach. Choi et al. [] extended Farhi and Panageas [] by
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employing a general CES utility function, which has the Cobb-Douglas utility function as a
special case, and by allowing a continuum between labor and leisure. In Choi et al. [], the
martingale method is used to provide an analytic form for the value function and optimal
strategies.

We revisit the optimization problem of Choi et al. [] to give some methodological con-
tributions and supply some numerical results which were not considered therein. We use
the dynamic programming approach based on Karatzas et al. [] to derive the closed-
form solutions including the value function and optimal strategies. Since our optimiza-
tion problem utilizes CES utility, it is important to investigate the effect of the elasticity
of substitution between consumption and leisure on the optimal policies. Numerically we
observe that the threshold retirement wealth level is an increasing function with respect
to the elasticity of substitution. This is due to the fact that an economic agent with a large
elasticity of substitution between consumption and leisure may consume more and en-
joy higher utility than an economic agent with a small elasticity of substitution when the
optimal leisure rate reaches the maximum leisure rate allowed while working. We also
show that our results converge to those with Cobb-Douglas utility in Koo et al. [] as the
elasticity of substitution goes to .

The rest of the paper is organized as follows. Section  sets up the economic model. In
Section , we solve the optimization problem using the dynamic programming method.
Section  provides numerical examples with a limiting case, and Section  concludes.

2 The economy
In the financial market, we assume that the agent has investment opportunities given by a
riskless asset with a constant interest rate r > , and one risky asset St whose price evolves
according to the following stochastic differential equation: dSt/St = μdt + σ dBt , where μ

is a constant mean rate of return, σ is a constant volatility, and Bt is a standard Brownian
motion on a probability space (�,F ,P). {Ft}t≥ is the P-augmentation of the filtration
generated by the standard Brownian motion {Bt}t≥.

Let πt be the amount of money invested in the risky asset at time t, ct ≥  be the agent’s
consumption rate process at time t, and lt ≥  be the agent’s leisure rate process at time t.
πt , ct , and lt are all Ft-progressively measurable and satisfy the following technical condi-
tions:

∫ t


π

s ds < ∞,
∫ t


cs ds < ∞ and

∫ t


ls ds < ∞ for all t ≥  a.s.

Let τ be the (voluntary) retirement time from labor which will be considered as an optimal
stopping time. The assumptions for the leisure rate process lt are given by

 ≤ lt ≤ L < L̄ for  ≤ t < τ and lt = L̄ for t ≥ τ ,

where L, L̄ are constants (see Choi et al. [] and Koo et al. []). Let w be the constant wage
rate. Then w(L̄ – lt) >  is the labor income rate at time t (< τ ) resulting from the labor-
leisure choice before retirement. However, since we choose lt = L̄ at time t (≥ τ ), there is no
labor income after retirement, that is, w(L̄ – lt) ≡ . Therefore the agent’s wealth process
xt at time t, with a given initial endowment x = x, evolves according to the following
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stochastic differential equation:

dxt =
[
rxt + πt(μ – r) – ct + w(L̄ – lt)

]
dt + σπt dBt .

A quadruple (c,π , l, τ ) is called admissible at initial capital x = x > –wL̄/r if xt > –wL̄/r and
 ≤ lt ≤ L for  ≤ t < τ , and xt ≥  for t ≥ τ , where c � {ct}t≥, π � {πt}t≥, and l � {lt}t≥.
Here wL̄/r can be considered as the present value of the (maximum) future labor income
of the agent.

3 The optimization problem
In this paper, we assume that the utility function u(·, ·) is of the CES type as follows:

u(c, l) � 
α

· {αcρ + ( – α)lρ} –γ
ρ

 – γ
, ρ < ,ρ �= ,  < α < ,γ >  and γ �= , (.)

where γ is the agent’s coefficient of relative risk aversion for consumption and leisure, α is
a measurement of consumption’s contribution to the agent’s utility, and /( – ρ) is the
elasticity of substitution between consumption and leisure.

The agent’s optimization problem is to maximize the following expected discounted
utility:

J(x; c,π , l, τ ) � E

[∫ τ


e–βtu(ct , lt) dt + e–βτ U(xτ )

]
,

where β >  is the subjective discount rate and

U(x) = max
(c,π)

E

[∫ ∞


e–βtu(ct , L̄) dt

]
. (.)

Thus the agent’s optimization problem is given by

V (x) � max
(c,π ,l,τ )∈A(x)

J(x; c,π , l, τ ), (.)

where A(x) is the set of all admissible quadruples at x > .

Remark . For later use, we define a quadratic algebraic equation as follows:

g(n) � 

θn +

(
β – r +



θ

)
n – r = ,

where θ � (μ – r)/σ is the market price of the risk. Because g() <  and g(–) < , it
follows that the quadratic equation g(n) =  has two real roots n and n satisfying n > 
and n < –. Also, we define p � n +  and p � n + .

Now we provide the following assumption that holds throughout the paper and guaran-
tees the optimization problem (.) will be well defined.
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Assumption . For uL(c) � u(c, L) and uL̄(c) � u(c, L̄), we assume that

∫ ∞

c

dy
(u′

L(y))n
< ∞ and

∫ ∞

c

dy
(u′

L̄(y))n
< ∞ for any c > .

Before retirement (t < τ ), we derive the following Hamilton-Jacobi-Bellman (HJB) equa-
tion for the value function V (x) by using the dynamic programming principle:

βV (x) = max
c,π ,l≤L

[{
rx + π (μ – r) – c + w(L̄ – l)

}
V ′(x) +



σ πV ′′(x) + u(c, l)

]
. (.)

We postulate that there exists a threshold wealth level x̄ (see, for similar conjecture and
validation, Choi and Shim [] or Dybvig and Liu []) corresponding to the optimal re-
tirement time τ ∗ such that the value function V (x) satisfies HJB equation (.) for x < x̄
and V (x) = U(x) in (.) for x ≥ x̄.

Theorem . Assume that a strictly increasing function v(x) ∈ C(–wL̄/r,∞) solves HJB
equation (.) for x < x̄ and v(x) = U(x) in (.) for x ≥ x̄, where x̄ is determined by the
smooth-pasting (or continuous differentiability) condition at x = x̄. Also assume that v(x) ∈
C(–wL̄/r,∞) \ {x̄}. Then v(x) ≥ J(x; c,π , l, τ ) for any admissible control (c,π , l, τ ) ∈A(x).

Let us define

τ ∗ � inf{t ≥  : xt ≥ x̄},
c∗

t � c,∗
t , π∗

t � π ,∗
t , l∗t � l,∗

t for  ≤ t < τ ∗,

c∗
t � c,∗

t , π∗
t � π,∗

t , l∗t � l,∗
t for t ≥ τ ∗,

where (c,∗
t ,π ,∗

t , l,∗
t ) is the maximizer of HJB equation (.) and (c,∗

t ,π,∗
t , l,∗

t ) is the opti-
mal consumption, portfolio, and leisure process corresponding to the post retirement value
function U(x). Then

v(x) = V (x) = max
(c,π ,l,τ )∈A(x)

J(x; c,π , l, τ ) = J
(
x; c∗,π∗, l∗, τ ∗).

Proof Let us define a function W (·, ·) as follows:

W (t, xt) = e–βtv(xt).

Applying Itô’s rule to W (t, xt) gives us

dW (t, xt) = e–βt
[{

rxt + πt(μ – r) – ct + w(L̄ – lt)
}

v′(xt) +


σ π

t v′′(xt) – βv(xt)
]

dt

+ σπte–βtv′(xt) dBt

≤ –e–βtu(ct , lt) dt + σπte–βtv′(xt) dBt ,

for  ≤ t < τ ∗, where the inequality comes from HJB equation (.) and

v(x) ≥
∫ s∧τ∗


e–βtu(ct , lt) dt + W

(
s ∧ τ ∗, xs∧τ∗

)
–

∫ s∧τ∗


σπte–βtv′(xt) dBt (.)
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for any s ≥ . Since the second integral of the right-hand side of (.) is a bounded local
martingale and hence a martingale, we obtain

v(x) ≥ E

[∫ s∧τ∗


e–βtu(ct , lt) dt + e–β(s∧τ∗)v(xs∧τ∗ )

]

for any admissible control (c,π , l, τ ∗) ∈A(x). Letting s ↑ ∞ and using the Lebesgue dom-
inated convergence theorem, we have

v(x) ≥ E

[∫ τ∗


e–βtu(ct , lt) dt + e–βτ∗

U(xτ∗ )
]

= J
(
x; c,π , l, τ ∗). (.)

If (c,∗
t ,π ,∗

t , l,∗
t ) is a maximizer of HJB equation (.), the inequality in (.) becomes equal-

ity and, consequently, v(x) = V (x). �

Theorem . The value function V (x) of the optimization problem (.) is given by

V (x) =

⎧⎪⎪⎨
⎪⎪⎩

(α + h)
–γ –ρ

ρ { n
p

A(C(x))–γ n–γ – h̃
γ K (C(x))–γ } for – wL̄

r < x < x̃,
n
p

B(u′
L(CL(x)))p + n

p
B(u′

L(CL(x)))p + JL(CL(x)) for x̃ ≤ x < x̄,
J̄(C̄(x)) for x ≥ x̄,

where x̃ is the threshold wealth level corresponding to the leisure rate of l = L, and x̄ is the
threshold wealth level corresponding to the optimal retirement time τ , with x̃ < x̄. Let c̃ and
c̄ be the optimal consumption rates corresponding to x̃ and x̄, respectively. c̃, B, c̄, x̄, B, A,
and x̃ are given as follows:

c̃ =
(

wα

 – α

) 
–ρ

L,

B =
h̃

( n
p

– n
p

)γ K

{
 –

n

p
( – γ )

}
c̃
(
u′

L(c̃)
)–n

–
n

( n
p

– n
p

)p

{
wL̄
r

+ XL,p(c̃)
}(

u′
L(c̃)

)–n +
JL(c̃)

n
p

– n
p

(
u′

L(c̃)
)–p ,

c̄ can be determined from the following algebraic equation:

(
n

p
–

n

p

)
B

(
J̄ ′(c̄)
X̄ ′(c̄)

)p

+
n

p

J̄ ′(c̄)
X̄ ′(c̄)

{
XL,p

(
IL

(
J̄ ′(c̄)
X̄ ′(c̄)

))
– X̄(c̄)

}

– JL

(
IL

(
J̄ ′(c̄)
X̄ ′(c̄)

))
+ J̄(c̄) = ,

where

XL,p(c) = –


θ(n – n)

{
(u′

L(c))n

n

∫ c



dy
(u′

L(y))n
+

(u′
L(c))n

n

∫ ∞

c

dy
(u′

L(y))n

}

+
c
r

–
w(L̄ – L)

r
,
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JL(c) =
uL(c)

β
–


θ(p – p)

{
(u′

L(c))p

p

∫ c



dy
(u′

L(y))n
+

(u′
L(c))p

p

∫ ∞

c

dy
(u′

L(y))n

}
, (.)

X̄(c) =
c
r

–


θ(n – n)

{ (u′
L̄(c))n

n

∫ c



dy
(u′

L̄(y))n
+

(u′
L̄(c))n

n

∫ ∞

c

dy
(u′

L̄(y))n

}
,

J̄(c) =
uL̄(c)

β
–


θ(p – p)

{ (u′
L̄(c))p

p

∫ c



dy
(u′

L̄(y))n
+

(u′
L̄(c))p

p

∫ ∞

c

dy
(u′

L̄(y))n

}
,

and IL(·) is the inverse function of u′
L(·). x̄ is given by

x̄ = X̄(c̄) = X̄
(
C̄(x̄)

)
,

where C̄(·) is the inverse function of X̄(·). We then obtain B as follows:

B = –B
(
u′

L(c̄L)
)n–n +

{
x̄ – XL,p(c̄L)

}(
u′

L(c̄L)
)–n ,

where

c̄L = IL

(
J̄ ′(c̄)
X̄ ′(c̄)

)

and A can be determined by

A = c̃γ n XL(c̃) +
( – γ )h̃

γ K
c̃γ n+ +

wL̄
r

c̃γ n ,

where

XL(c) = B
(
u′

L(c)
)n + B

(
u′

L(c)
)n + XL,p(c).

The threshold wealth level x̃ is given by

x̃ = XL(c̃),

where

K � r +
β – r

γ
+

γ – 
γ  θ, h̃ � –

(α + h)γ
α( – γ )

, h � ( – α)
(

 – α

wα

) ρ
–ρ

, (.)

X(c) = Ac–γ n –
( – γ )h̃

γ K
c –

wL̄
r

,

C(·) is the inverse function of X(·), and CL(·) is the inverse function of XL(·).

Proof Due to the constraint lt ≤ L for t < τ , we introduce another wealth threshold level
x̃ such that HJB equation (.) can be split into

βV (x) =
[{

rx + π∗(μ – r) – c∗ + w
(
L̄ – l∗

)}
V ′(x) +



σ (π∗)V ′′(x) + u

(
c∗, l∗

)]
(.)
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for –wL̄/r < x < x̃, where

π∗ = –
θ

σ

V ′(x)
V ′′(x)

, V ′(x) = (α + h)
–γ –ρ

ρ
(
c∗)–γ , l∗ =

(
 – α

wα

) 
–ρ

c∗ (.)

are obtained from the first order conditions (FOCs), and

βV (x) =
[{

rx + π∗(μ – r) – c∗ + w(L̄ – L)
}

V ′(x) +


σ (π∗)V ′′(x) + uL

(
c∗)] (.)

for x̃ ≤ x < x̄, where

π∗ = –
θ

σ

V ′(x)
V ′′(x)

, u′
L
(
c∗) = V ′(x) (.)

are also obtained from the first order conditions (FOCs). Here h is a constant defined in
(.).

In order to solve HJB equation (.), we consider the optimal consumption c as a func-
tion of the agent’s wealth x by writing c = C(x), and suppose that C(·) has an inverse func-
tion X(·). Then we have

V ′(x) = (α + h)
–γ –ρ

ρ C(x)–γ and V ′′(x) = –γ (α + h)
–γ –ρ

ρ
C(x)–γ –

X ′(c)
,

and we can rewrite HJB equation (.) as follows:

βV
(
X(c)

)
= (α + h)

–γ –ρ
ρ

[


γ
θc–γ X ′(c) + rc–γ X(c) + wL̄c–γ – h̃c–γ

]
, (.)

where h̃ is a constant defined in (.). We differentiate (.) with respect to c to obtain
the following second-order ordinary differential equation (ODE):


γ

θcX ′′(c) +
(

r – β +
 – γ

γ
θ

)
cX ′(c) – rγ X(c) – ( – γ )h̃c – wγ L̄ = . (.)

The general solution to ODE (.) is given by

X(c) = Ac–γ n –
( – γ )h̃

γ K
c –

wL̄
r

, (.)

where A is some constant and K is a constant defined in (.) (A will be determined
later). Substituting (.) into (.), we have

V (x) = (α + h)
–γ –ρ

ρ

{ r – 
θn

β
Ac–γ n–γ –

h̃
γ K

c–γ

}

= (α + h)
–γ –ρ

ρ

{
n

p
Ac–γ n–γ –

h̃
γ K

c–γ

}
.

Similarly, we introduce a function XL(·) such that the agent’s wealth x = XL(c) and its
inverse function CL(·) such that the optimal consumption c = CL(x) to solve HJB equation
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(.). Then we obtain

V ′(x) = u′
L
(
CL(x)

)
, V ′′(x) =

u′′
L(CL(x))
X ′

L(c)

and HJB equation (.) becomes

βV
(
XL(c)

)
= –



θ (u′

L(c))

u′′
L(c)

X ′
L(c) +

{
rXL(c) – c + w(L̄ – L)

}
u′

L(c) + uL(c). (.)

If we differentiate (.) with respect to c, then we obtain



θX ′′

L (c) =
{(

r – β – θ)u′′
L(c)

u′
L(c)

+


θ u′′′

L (c)
u′′

L(c)

}
X ′

L(c) + r
{

u′′
L(c)

u′
L(c)

}

XL(c)

+
{

–c + w(L̄ – L)
}{u′′

L(c)
u′

L(c)

}

. (.)

The variation of parameters method for ODE (.) provides us with a particular solution
XL,p(c) to ODE (.):

XL,p(c) = –


θ(n – n)

{
(u′

L(c))n

n

∫ c



dy
(u′

L(y))n
+

(u′
L(c))n

n

∫ ∞

c

dy
(u′

L(y))n

}

+
c
r

–
w(L̄ – L)

r
.

The general solution to ODE (.) is then given by

XL(c) = B
(
u′

L(c)
)n + B

(
u′

L(c)
)n + XL,p(c), (.)

where B and B are some constants to be determined later. Plugging (.) into (.)
gives rise to

V (x) =
n

p
B

(
u′

L(c)
)p +

n

p
B

(
u′

L(c)
)p + JL(c), (.)

where

JL(c) =
uL(c)

β
–


θ(p – p)

{
(u′

L(c))p

p

∫ c



dy
(u′

L(y))n
+

(u′
L(c))p

p

∫ ∞

c

dy
(u′

L(y))n

}
.

After retirement, we derive the value function V (x) = U(x) = J̄(C̄(x)) from Karatzas et
al. [], where a function X̄(·) and its inverse function C̄(·) are given such that the agent’s
wealth x = X̄(c) and the optimal consumption c = C̄(x), and X̄(c) and J̄(c) are defined in
(.).

Now we are going to determine the coefficients A, B, B and the wealth boundaries x̃
and x̄. First, we use the continuity of V ′(x) at x = x̃. We then have

V ′(x̃) = (α + h)
–γ –ρ

ρ c̃–γ = c̃ρ–{αc̃ρ + ( – α)Lρ
} –γ –ρ

ρ ,
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from which we obtain the relation

c̃ =
(

wα

 – α

) 
–ρ

L,

where c̃ is the optimal consumption rate corresponding to x̃, that is, x̃ = X(c̃). Also the
continuity of V (x) at x = x̃ implies

V (x̃) = (α + h)
–γ –ρ

ρ

{
n

p
c̃–γ n–γ A –

h̃
γ K

c̃–γ

}

=
n

p

(
u′

L(c̃)
)p B +

n

p

(
u′

L(c̃)
)p B + JL(c̃). (.)

By (.) and (.), we obtain

x̃ = c̃–γ n A –
( – γ )h̃

γ K
c̃ –

wL̄
r

=
(
u′

L(c̃)
)n B +

(
u′

L(c̃)
)n B + XL,p(c̃). (.)

Combining (.), (.), and the fact u′
L(c̃) = (α + h)

–γ –ρ
ρ c̃–γ , we obtain

B =
h̃

( n
p

– n
p

)γ K

{
 –

n

p
( – γ )

}
c̃
(
u′

L(c̃)
)–n

–
n

( n
p

– n
p

)p

{
wL̄
r

+ XL,p(c̃)
}(

u′
L(c̃)

)–n +
JL(c̃)

n
p

– n
p

(
u′

L(c̃)
)–p .

Second, we use the smooth-pasting condition of V (x) at x = x̄ to determine x̄ and c̄,
where c̄ is the optimal consumption rate corresponding to x̄. Since the leisure rate is dis-
continuous at x = x̄, we conjecture that there are c̄L and c̄ (c̄L �= c̄) such that

x̄ = XL(c̄L) = X̄(c̄). (.)

Thus we have

x̄ = B
(
u′

L(c̄L)
)n + B

(
u′

L(c̄L)
)n + XL,p(c̄L) = X̄(c̄) (.)

and

V (x̄) =
n

p
B

(
u′

L(c̄L)
)p +

n

p
B

(
u′

L(c̄L)
)p + JL(c̄L) = J̄(c̄) (.)

from (.) and (.), respectively. From (.) and (.), we have

(
n

p
–

n

p

)
B

(
u′

L(c̄L)
)p +

n

p
u′

L(c̄L)
{

XL,p(c̄L) – X̄(c̄)
}

=
{

JL(c̄L) – J̄(c̄)
}

. (.)

The C-condition of V (x) at x = x̄ and FOCs (.) give us

V ′(x̄) = u′
L(c̄L) =

J̄ ′(c̄)
X̄ ′(c̄)
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and, consequently,

c̄L = IL

(
J̄ ′(c̄)
X̄ ′(c̄)

)
, (.)

where IL(·) is the inverse function of u′
L(·). Substituting (.) into (.) implies

(
n

p
–

n

p

)
B

(
J̄ ′(c̄)
X̄ ′(c̄)

)p

+
n

p

J̄ ′(c̄)
X̄ ′(c̄)

{
XL,p

(
IL

(
J̄ ′(c̄)
X̄ ′(c̄)

))
– X̄(c̄)

}

– JL

(
IL

(
J̄ ′(c̄)
X̄ ′(c̄)

))
+ J̄(c̄) = . (.)

If c̄ is obtained from (.), then c̄L is also obtained from (.). Thus we can get x̄ from
(.). From (.) and (.), we also derive

B = –B
(
u′

L(c̄L)
)n–n +

{
x̄ – XL,p(c̄L)

}(
u′

L(c̄L)
)–n

and

A = c̃γ n XL(c̃) +
( – γ )h̃

γ K
c̃γ n+ +

wL̄
r

c̃γ n . �

FOCs (.) and (.) give us the following optimal strategies.

Theorem . The optimal strategies (c∗, l∗,π∗, τ ∗) are given by

c∗
t =

⎧⎪⎨
⎪⎩

C(xt) for – wL̄
r < xt < x̃,

CL(xt) for x̃ ≤ xt < x̄,
C̄(xt) for xt ≥ x̄,

l∗t =

⎧⎪⎨
⎪⎩

( –α
wα

)


–ρ C(xt) for – wL̄
r < xt < x̃,

L for x̃ ≤ xt < x̄,
L̄ for xt ≥ x̄,

π∗
t =

⎧⎪⎪⎨
⎪⎪⎩

θ
σγ

{–γ nA(C(xt))–γ n – (–γ )h̃
γ K C(xt)} for – wL̄

r < xt < x̃,
θ
σ

α(CL(xt ))ρ+(–α)Lρ

αγ (CL(xt ))ρ+(–α)(–ρ)Lρ CL(xt)X ′
L(CL(xt)) for x̃ ≤ xt < x̄,

θ
σ

α(C̄(xt ))ρ+(–α)L̄ρ

αγ (C̄(xt ))ρ+(–α)(–ρ)L̄ρ C̄(xt)X̄ ′(C̄(xt)) for xt ≥ x̄,

and

τ ∗ = inf{t ≥  : xt ≥ x̄}.

Remark . The optimal strategies (c∗, l∗,π∗, τ ∗) in Theorem . are the same as those
in Theorem . from Choi et al. []. Although it is difficult to obtain an explicit transfor-
mation between them, simple but tedious calculations show that they are equivalent.

4 Numerical examples and Cobb-Douglas utility
In this section, we present numerical examples and a limiting case ρ → , that is, the
elasticity of substitution goes to . In this case, our CES utility function becomes a Cobb-
Douglas utility function.

In Figure , we see that there exists a discontinuity of the optimal consumption at the
threshold wealth level x = x̄. This result is similar to Figure . in Choi et al. [] which was
obtained in the limiting case ρ → .
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Figure 1 Optimal consumption as a function of
the wealth level (β = 0.1, r = 0.02, μ = 0.07,
σ = 0.2, γ = 2, α = 0.2, L̄ = 1, L = 0.75, w = 10, and
ρ = 0.1).

Figure 2 Retirement wealth level as a function of
the elasticity of substitution 1/(1 – ρ) (β = 0.1,
r = 0.02, μ = 0.07, σ = 0.2, α = 0.2, L̄ = 1, L = 0.75,
and w = 10).

In Figure , we observe that the critical wealth level x̄ is an increasing function with
respect to the elasticity of substitution between consumption and leisure, /( – ρ). In this
model, retirement incentive is derived from a large leisure rate while not working. Before
retirement, an economic agent’s leisure rate is upper limited by L, and when the leisure
rate at which the economic agent optimally enjoys reaches L, she is forced to reduce leisure
and to increase consumption to retain the utility. In this situation, an economic agent with
a large elasticity of substitution between consumption and leisure may consume more and
enjoy higher utility than an economic agent with a small elasticity of substitution. So the
former has a larger incentive to stay working and a higher threshold retirement wealth
level than the latter and tends to delay retirement.

Let us investigate a limiting case. A Cobb-Douglas utility function is defined by

uCD(c, l) � 
α

· (cαl–α)–γ

 – γ
,  < α < ,γ >  and γ �= ,

which is a special case of a CES utility function given in (.) due to the fact that

lim
ρ→


α

· {αcρ + ( – α)lρ} –γ
ρ

 – γ
=


α

· (cαl–α)–γ

 – γ

from L’Hôpital’s rule. Also note that

lim
ρ→

h =  – α, lim
ρ→

h̃ = –
γ

α( – γ )
, lim

ρ→
(α + h)

–γ –ρ
ρ =

(
wα

 – α

)–(γ–γ )

,

and

lim
ρ→

(α + h)
–γ –ρ

ρ c̃–γ = c̃–γ
s Lγ–γ ,
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where

γ �  – α( – γ ), c̃s =
(

wα

 – α

)
L.

Using the relation

r – 
θn,

β
=

n,

p,
,

we also derive

lim
ρ→

A = A,s, lim
ρ→

B = L(γ –γ)n B,s, lim
ρ→

B = L(γ –γ)n B,s,

where A,s, B,s, B,s are the coefficients A, B, B of Theorem . in Koo et al. [], respec-
tively. Therefore, we see that the value function and optimal strategies of the agent in this
paper coincide with those of Koo et al. [].

5 Conclusion
With the dynamic programming method, we have provided some methodological con-
tributions to the previous research, Choi et al. [] which solved an optimal portfolio,
consumption-leisure and retirement choice problem for an infinitely lived economic agent
with a CES utility function. Through some illustrative numerical examples, we see that the
threshold retirement wealth level increases with the elasticity of substitution. The solu-
tions to a limiting case when the elasticity of substitution goes to  become those of the
optimization problem with a Cobb-Douglas utility function.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper.

Author details
1Research Institute of Finance & Risk Management, POSTECH, Pohang, 37673, Republic of Korea. 2Department of
Mathematics, Sookmyung Women’s University, Seoul, 04310, Republic of Korea.

Acknowledgements
The corresponding author (YH Shin) gratefully acknowledges the support of Sookmyung Women’s University Research
Grants 2013 (1-1303-0272).

Received: 12 August 2015 Accepted: 24 September 2015

References
1. Bodie, Z, Merton, RC, Samuelson, WF: Labor supply flexibility and portfolio choice in a life cycle model. J. Econ. Dyn.

Control 16, 427-449 (1992)
2. Merton, RC: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247-257

(1969)
3. Merton, RC: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373-413

(1971)
4. Farhi, E, Panageas, S: Saving and investing for early retirement: a theoretical analysis. J. Financ. Econ. 83, 87-121 (2007)
5. Shin, YH: Voluntary retirement and portfolio selection: dynamic programming approaches. Appl. Math. Lett. 25,

1087-1093 (2012)
6. Koo, JL, Koo, BL, Shin, YH: An optimal investment, consumption, leisure, and voluntary retirement problem with

Cobb–Douglas utility: dynamic programming approaches. Appl. Math. Lett. 26, 481-486 (2013)
7. Dybvig, PH, Liu, H: Lifetime consumption and investment: retirement and constrained borrowing. J. Econ. Theory

145, 885-907 (2010)



Lee and Shin Journal of Inequalities and Applications  (2015) 2015:319 Page 13 of 13

8. Barucci, E, Marazzina, D: Optimal investment, stochastic labor income and retirement. Appl. Math. Comput. 213,
5588-5604 (2012)

9. Choi, KJ, Shim, G, Shin, YH: Optimal portfolio, consumption-leisure and retirement choice problem with CES utility.
Math. Finance 18, 445-472 (2008)

10. Karatzas, I, Lehoczky, JP, Sethi, SP, Shreve, SE: Explicit solution of a general consumption/investment problem. Math.
Oper. Res. 11, 261-294 (1986)

11. Choi, KJ, Shim, G: Disutility, optimal retirement, and portfolio selection. Math. Finance 16, 443-467 (2006)
12. Dybvig, PH, Liu, H: Verification theorems for models of optimal consumption and investment with retirement and

constrained borrowing. Math. Oper. Res. 36, 620-635 (2011)


	An optimal portfolio, consumption-leisure and retirement choice problem with CES utility: a dynamic programming approach
	Abstract
	MSC
	Keywords

	Introduction
	The economy
	The optimization problem
	Numerical examples and Cobb-Douglas utility
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


