171 research outputs found

    Chelator-facilitated removal of iron from transferrin: Relevance to combined chelation therapy

    Get PDF
    Current iron chelation therapy consists primarily of DFO (desferrioxamine), which has to be administered via intravenous infusion, together with deferiprone and deferasirox, which are orally-active chelators. These chelators, although effective at decreasing the iron load, are associated with a number of side effects. Grady suggested that the combined administration of a smaller bidentate chelator and a larger hexadentate chelator, such as DFO, would result in greater iron removal than either chelator alone [Grady, Bardoukas and Giardina (1998) Blood 92, 16b]. This in turn could lead to a decrease in the chelator dose required. To test this hypothesis, the rate of iron transfer from a range of bidentate HPO (hydroxypyridin-4-one) chelators to DFO was monitored. Spectroscopic methods were utilized to monitor the decrease in the concentration of the Fe–HPO complex. Having established that the shuttling of iron from the bidentate chelator to DFO does occur under clinically relevant concentrations of chelator, studies were undertaken to evaluate whether this mechanism of transfer would apply to iron removal from transferrin. Again, the simultaneous presence of both a bidentate chelator and DFO was found to enhance the rate of iron chelation from transferrin at clinically relevant chelator levels. Deferiprone was found to be particularly effective at ‘shuttling’ iron from transferrin to DFO, probably as a result of its small size and relative low affinity for iron compared with other analogous HPO chelators

    Monitoring the efficiency of iron chelation therapy: the potential of nontransferrin-bound iron.

    No full text
    The major ligands of nontransferrin-bound iron (NTBI) are suggested to be citrate and albumin. The proportion of iron binding to albumin is influenced by the degree of oxidation and glycation of the protein. LC-ICP-MS is demonstrated to be a useful technique for the speciation of NTBI, with unprocessed serum being subjected to analysis. Ferritin iron, citrate iron, and ferrioxamine can be quantified using this technique. This review describes the use of a new fluorescent probe for NTBI quantification

    Intravenous iron preparations transiently generate non-transferrin-bound iron from two proposed pathways

    Get PDF
    Intravenous iron-carbohydrate complex preparations (IVIPs) are non-interchangeable pro-drugs: their pharmacokinetics (PK) varies determined by semi-crystalline iron core and carbohydrate shell structures, influences pharmacodynamics (PD) and thus efficacy and safety. Examining PK/PD relationships of 3 IVIPs we identify a two-pathway model of transient NTBI generation following single dose administration. 28 hypoferremic non-anemic patients randomized to 200mg iron as ferric carboxymaltose (Fe-carboxymaltose), iron sucrose (Fe-sucrose), iron isomaltoside 1000 (Fe-isomaltoside-1000), n=8/arm, or placebo, n=4, on a 2-week PK/PD study, had samples analysed for total serum iron, IVIP-iron, transferrin-bound iron (TBI) by HPLC-ICP-MS, transferrin saturation (TSAT), serum ferritin (s-Ferritin) by standard methods, non-TBI (NTBI) and hepcidin as published before. IVIP-dependent increases in these parameters returned to baseline in 48-150h, except for s-Ferritin and TSAT. NTBI was low with Fe-isomaltoside-1000 (0.13µM at 8h), rapidly increased with Fe-sucrose (0.8µM at 2h, 1.25µM at 4h), and delayed for Fe-carboxymaltose (0.57µM at 24h). NTBI AUCs were 7-fold greater for Fe-carboxymaltose and Fe-sucrose than for Fe-isomaltoside-1000. Hepcidin peak time varied, but not AUC or mean levels. s-Ferritin levels and AUC were highest for Fe-carboxymaltose and greater than placebo for all IVIPs. We propose 2 mechanisms for the observed NTBI kinetics: rapid and delayed NTBI appearance consistent with direct (circulating IVIP-to-plasma) and indirect (IVIP-to-macrophage-to-plasma) iron release based on IVIP plasma half-life and s-Ferritin dynamics. IVIPs generate different, broadly stability- and PK-dependent, NTBI and s-Ferritin signatures, which may influence iron bioavailability, efficacy and safety. Longer-term studies should link NTBI exposure to subsequent safety and efficacy parameters and potential clinical consequences

    Design of Bifunctional Dendritic 5-Aminolevulinic Acid and Hydroxypyridinone Conjugates for Photodynamic Therapy

    Get PDF
    Iron chelators have recently attracted interest in the field of photodynamic therapy (PDT) owing to their role in enhancement of intracellular protoporphyrin IX (PpIX) generation induced by 5-aminolevulinic acid (ALA) via the biosynthetic heme cycle. Although ALA is widely used in PDT, cellular uptake of ALA is limited by its hydrophilicity. In order to improve ALA delivery and enhance the PpIX production, several dendrimers incorporating both ALA and 3-hydroxy-4-pyridinone (HPO) were synthesized. The ability of the dendrimers to enter cells and be metabolized to the PpIX photosensitizer was studied in several human cancer cell lines. The dendrimers were found to be significantly more efficient than ALA alone in PpIX production. The higher intracellular PpIX levels showed a clear correlation with enhanced cellular phototoxicity following light exposure. Dendritic derivatives are therefore capable of efficiently delivering both ALA and HPO, which act synergistically to amplify in vitro PpIX levels and enhance PDT efficacy

    Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders

    Get PDF
    Non-transferrin-bound iron and its labile (redox active) plasma iron component are thought to be potentially toxic forms of iron originally identified in the serum of patients with iron overload. We compared ten worldwide leading assays (6 for non-transferrin-bound iron and 4 for labile plasma iron) as part of an international inter-laboratory study. Serum samples from 60 patients with four different iron-overload disorders in various treatment phases were coded and sent in duplicate for analysis to five different laboratories worldwide. Some laboratories provided multiple assays. Overall, highest assay levels were observed for patients with untreated hereditary hemochromatosis and beta-thalassemia intermedia, patients with transfusion-dependent myelodysplastic syndromes and patients with transfusion-dependent and chelated beta-thalassemia major. Absolute levels differed considerably between assays and were lower for labile plasma iron than for non-transferrin-bound iron. Four assays also reported negative values. Assays were reproducible with high between-sample and low within-sample variation. Assays correlated and correlations were highest within the group of non-transferrin-bound iron assays and within that of labile plasma iron assays. Increased transferrin saturation, but not ferritin, was a good indicator of the presence of forms of circulating non-transferrin-bound iron. The possibility of using non-transferrin-bound iron and labile plasma iron measures as clinical indicators of overt iron overload and/or of treatment efficacy would largely depend on the rigorous validation and standardization of assay

    Antifibrinolytic Role of a Bee Venom Serine Protease Inhibitor That Acts as a Plasmin Inhibitor

    Get PDF
    Bee venom is a rich source of pharmacologically active substances. In this study, we identified a bumblebee (Bombus ignitus) venom Kunitz-type serine protease inhibitor (Bi-KTI) that acts as a plasmin inhibitor. Bi-KTI showed no detectable inhibitory effect on factor Xa, thrombin, or tissue plasminogen activator. In contrast, Bi-KTI strongly inhibited plasmin, indicating that it acts as an antifibrinolytic agent; however, this inhibitory ability was two-fold weaker than that of aprotinin. The fibrin(ogen)olytic activities of B. ignitus venom serine protease (Bi-VSP) and plasmin in the presence of Bi-KTI indicate that Bi-KTI targets plasmin more specifically than Bi-VSP. These findings demonstrate a novel mechanism by which bumblebee venom affects the hemostatic system through the antifibrinolytic activity of Bi-KTI and through Bi-VSP-mediated fibrin(ogen)olytic activities, raising interest in Bi-KTI and Bi-VSP as potential clinical agents

    Stabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds

    Get PDF
    We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of Tm of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the Tm of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the Tm of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule

    Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM(4-) siderophore analogues of varied linker length

    Get PDF
    Bacteria use siderophores to mediate the transport of essential Fe(III) into the cell. In Campylobacter jejuni the periplasmic binding protein CeuE, an integral part of the Fe(III) transport system, has adapted to bind tetradentate siderophores using a His and a Tyr side chain to complete the Fe(III) coordination. A series of tetradentate siderophore mimics was synthesized in which the length of the linker between the two iron-binding catecholamide units was increased from four carbon atoms (4-LICAM(4-)) to five, six and eight (5-, 6-, 8-LICAM(4-), respectively). Co-crystal structures with CeuE showed that the inter-planar angles between the iron-binding catecholamide units in the 5-, 6- and 8-LICAM(4-) structures are very similar (111°, 110° and 110°) and allow for an optimum fit into the binding pocket of CeuE, the inter-planar angle in the structure of 4-LICAM(4-) is significantly smaller (97°) due to restrictions imposed by the shorter linker. Accordingly, the protein-binding affinity was found to be slightly higher for 5- compared to 4-LICAM(4-) but decreases for 6- and 8-LICAM(4-). The optimum linker length of five matches that present in natural siderophores such as enterobactin and azotochelin. Site-directed mutagenesis was used to investigate the relative importance of the Fe(III)-coordinating residues H227 and Y288

    Siderophore production by Bacillus megaterium : effect of growth-phase and cultural conditions

    Get PDF
    Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g−1 dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g−1 dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546–842 μmol g−1 dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.The authors thank Porto University/Totta Bank for their financial support through the project "Microbiological production of chelating agents" (Ref: 180). The authors also thank the Fundacao para a Ciencia e a Tecnologia (FCT) through the Portuguese Government for their financial support of this work through the grants Strategic project-LA23/2013-2014 (IBB) and PEST-C/EQB/LA0006/2011 (REQUIMTE). Manuela D. Machado gratefully acknowledges the postdoctoral (SFRH/BPD/72816/2010) grant from FCT

    Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging

    Get PDF
    PURPOSE: Invasive pulmonary aspergillosis is mainly caused by Aspergillus fumigatus, and is one of the major causes of morbidity and mortality in immunocompromised patients. The mortality associated with invasive pulmonary aspergillosis remains high, mainly due to the difficulties and limitations in diagnosis. We have shown that siderophores can be labelled with (68)Ga and can be used for PET imaging of A. fumigatus infection in rats. Here we report on the further evaluation of the most promising (68)Ga-siderophore candidates, triacetylfusarinine (TAFC) and ferrioxamine E (FOXE). METHODS: Siderophores were labelled with (68)Ga using acetate buffer. Log P, protein binding and stability values were determined. Uptake by A. fumigatus was studied in vitro in cultures with high and low iron loads. In vivo biodistribution was determined in normal mice and an infection model was established using neutropenic rats inoculated with A. fumigatus. Static and dynamic muPET imaging was performed and correlated with CT images, and lung infection was evaluated ex vivo. RESULTS: (68)Ga-siderophores were labelled with high radiochemical purity and specific activity. (68)Ga-TAFC and (68)Ga-FOXE showed high uptake by A. fumigatus in iron-deficient cultures. In normal mice, (68)Ga-TAFC and (68)Ga-FOXE showed rapid renal excretion with high metabolic stability. In the rat infection model focal lung uptake was detected by muPET with both compounds and increased with severity of the infection, correlating with abnormal CT images. CONCLUSION: (68)Ga-TAFC and (68)Ga-FOXE displayed excellent in vitro stability and high uptake by A. fumigatus. Both compounds showed excellent pharmacokinetics, highly selective accumulation in infected lung tissue and good correlation with severity of disease in a rat infection model, which makes them promising agents for A. fumigatus infection imaging
    corecore