70 research outputs found
Recommended from our members
Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae)
Neoseiulus cucumeris is a predatory mite used for biological control of arthropod pests. Mass-reared predators are fed with factitious prey mites such as Tyrophagus putrescentiae. Although some information on certain endosymbionts of N. cucumeris and T. putrescentiae exists, it is unclear whether both species share bacterial communities. The bacterial communities in populations of predator and prey mites, as well as the occurence of potential acaropathogenic bacteria were analyzed. The comparisons were based on the following groups: (i) N. cucumeris mass-production; (ii) N. cucumeris laboratory population with disease symptoms; (iii) T. putrescentiae pure populations and; (iv) T. putrescentiae from rearing units of N. cucumeris. Only 15% of OTUs were present in all samples from predatory and prey mite populations (core OTUs): the intracellular symbionts Wolbachia, Cardinium, plus other Blattabacterium-like, Solitalea-like, and Bartonella-like symbionts. Environmental bacteria were more abundant in predatory mites, while symbiotic bacteria prevailed in prey mites. Relative numbers of certain bacterial taxa were significantly different between the microbiota of prey mites reared with and without N. cucumeris. No significant differences were found in the bacterial communities of healthy N. cucumeris compared to N. cucumeris showing disease symptoms. We did not identify any confirmed acaropathogenic bacteria among microbiota
Mechanical behaviour and rupture of normal and pathological human ascending aortic wall
The mechanical properties of aortic wall, both healthy and pathological, are needed in order to develop and improve diagnostic and interventional criteria, and for the development of mechanical models to assess arterial integrity. This study focuses on the mechanical behaviour and rupture conditions of the human ascending aorta and its relationship with age and pathologies. Fresh ascending aortic specimens harvested from 23 healthy donors, 12 patients with bicuspid aortic valve (BAV) and 14 with aneurysm were tensile-tested in vitro under physiological conditions. Tensile strength, stretch at failure and elbow stress were measured. The obtained results showed that age causes a major reduction in the mechanical parameters of healthy ascending aortic tissue, and that no significant differences are found between the mechanical strength of aneurysmal or BAV aortic specimens and the corresponding age-matched control group. The physiological level of the stress in the circumferential direction was also computed to assess the physiological operation range of healthy and diseased ascending aortas. The mean physiological wall stress acting on pathologic aortas was found to be far from rupture, with factors of safety (defined as the ratio of tensile strength to the mean wall stress) larger than six. In contrast, the physiological operation of pathologic vessels lays in the stiff part of the response curve, losing part of its function of damping the pressure waves from the heart
A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR
<p>Abstract</p> <p>Background</p> <p>Although cardiovascular magnetic resonance (CMR) is frequently performed to measure accurate LV volumes and ejection fractions, LV volume-time curves (VTC) derived ejection and filling rates are not routinely calculated due to lack of robust LV segmentation techniques. VTC derived peak filling rates can be used to accurately assess LV diastolic function, an important clinical parameter. We developed a novel geometry-independent dual-contour propagation technique, making use of LV endocardial contours manually drawn at end systole and end diastole, to compute VTC and measured LV ejection and filling rates in hypertensive patients and normal volunteers.</p> <p>Methods</p> <p>39 normal volunteers and 49 hypertensive patients underwent CMR. LV contours were manually drawn on all time frames in 18 normal volunteers. The dual-contour propagation algorithm was used to propagate contours throughout the cardiac cycle. The results were compared to those obtained with single-contour propagation (using either end-diastolic or end-systolic contours) and commercially available software. We then used the dual-contour propagation technique to measure peak ejection rate (PER) and peak early diastolic and late diastolic filling rates (ePFR and aPFR) in all normal volunteers and hypertensive patients.</p> <p>Results</p> <p>Compared to single-contour propagation methods and the commercial method, VTC by dual-contour propagation showed significantly better agreement with manually-derived VTC. Ejection and filling rates by dual-contour propagation agreed with manual (dual-contour – manual PER: -0.12 ± 0.08; ePFR: -0.07 ± 0.07; aPFR: 0.06 ± 0.03 EDV/s, all P = NS). However, the time for the manual method was ~4 hours per study versus ~7 minutes for dual-contour propagation. LV systolic function measured by LVEF and PER did not differ between normal volunteers and hypertensive patients. However, ePFR was lower in hypertensive patients vs. normal volunteers, while aPFR was higher, indicative of altered diastolic filling rates in hypertensive patients.</p> <p>Conclusion</p> <p>Dual-propagated contours can accurately measure both systolic and diastolic volumetric indices that can be applied in a routine clinical CMR environment. With dual-contour propagation, the user interaction that is routinely performed to measure LVEF is leveraged to obtain additional clinically relevant parameters.</p
Delayed gastric emptying following pancreatoduodenectomy with alimentary reconstruction according to Roux-en-Y or Billroth-II
Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array
Risk factors for self-reported delinquency in emerging adulthood
The goal of this study is to examine risk factors for delinquency in emerging adulthood, highlighting any differences between those generally found for adolescent delinquent behaviour. The importance of examining risk factors for this age group is discussed, given recent changes in the nature of the early adult years, and the fact that, although the majority of adolescent offenders desist during adulthood, there remain a high number of offenders in the early adult years. Risk effects for self-reported delinquency were examined in a general population sample of emerging adults (age 18–24). A range of risk factor measures, such as peer delinquency, need for autonomy, parental support and substance use, were used to predict reporting of at least one arrestable offence in a six-month period beginning a year later. In the full model, parental social support, alcohol use and a measure of self-control, aggression and criminal attitude all significantly predicted delinquency. We conclude that a good relationship with parents continues to be an important protective factor and that alcohol use continues to indicate problems with delinquency during emerging adulthood, similarly to during adolescence. These two factors are discussed as being suitable issues for interventions. We also discuss the theoretical implications of our findings
Serum Paraoxonase Activity and the Extent of Lipid Peroxidation Are not Affected by Increased Levels of Human Apolipoprotein A-I: Studies in Transgenic Mice
The Effect of Uncertainty in Vascular Wall Material Properties on Abdominal Aortic Aneurysm Wall Mechanics
Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms
- …
