75 research outputs found

    Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna

    Get PDF
    Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25°C and fed algae with 10 different molar C:P ratios (95–660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10°C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q10 value, responded non-linearly with C:P, with Q10 ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    Stability of Strong Species Interactions Resist the Synergistic Effects of Local and Global Pollution in Kelp Forests

    Get PDF
    Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO2). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO2). The positive effects of nutrient and CO2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities

    The Gene Ontology resource: enriching a GOld mine

    Get PDF
    The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations

    Minimising losses to predation during microalgae cultivation

    Get PDF
    We explore approaches to minimise impacts of zooplanktonic pests upon commercial microalgal crops using system dynamics models to describe algal growth controlled by light and nutrient availability and zooplankton growth controlled by crop abundance and nutritional quality. Losses of microalgal crops are minimised when their growth is fastest and, in contrast, also when growing slowly under conditions of nutrient exhaustion. In many culture systems, however, dwindling light availability due to self-shading in dense suspensions favours slow growth under nutrient sufficiency. Such a situation improves microalgal quality as prey, enhancing zooplankton growth, and leads to rapid crop collapse. Timing of pest entry is important; crop losses are least likely in established, nutrient-exhausted microalgal communities grown for high C-content (e.g. for biofuels). A potentially useful approach is to promote a low level of P-stress that does not adversely affect microalgal growth but which produces a crop that is suboptimal for zooplankton growth

    Dominance of biologically produced nitrate in upland waters of Great Britain indicated by stable isotopes

    Get PDF
    Atmospheric deposition of nitrogen (N) compounds is the major source of anthropogenic N to most upland ecosystems, where leaching of nitrate (NO3−) into surface waters contributes to eutrophication and acidification as well as indicating an excess of N in the terrestrial catchment ecosystems. Natural abundance stable isotopes ratios, 15N/14N and 18O/16O (the “dual isotope” technique) have previously been used in biogeochemical studies of alpine and forested ecosystems to demonstrate that most of the NO3− in upland surface waters has been microbially produced. Here we present an application of the technique to four moorland catchments in the British uplands including a comparison of lakes and their stream inflows at two sites. The NO3− concentrations of bulk deposition and surface waters at three sites are very similar. While noting the constraints imposed by uncertainty in the precise δ18O value for microbial NO3−, however, we estimate that 79–98% of the annual mean NO3− has been microbially produced. Direct leaching of atmospheric NO3− is a minor component of catchment NO3− export, although greater than in many similar studies in forested watersheds. A greater proportion of atmospheric NO3− is seen in the two lake sites relative to their inflow streams, demonstrating the importance of direct NO3− deposition to lake surfaces in catchments where terrestrial ecosystems intercept a large proportion of deposited N. The dominance of microbial sources of NO3− in upland waters suggests that reduced and oxidised N deposition may have similar implications in terms of contributing to NO3− leaching
    corecore