7,885 research outputs found
Magnetars and pulsars: a missing link
There is growing evidence that soft gamma-ray repeaters (SGRs) and anomalous
X-ray pulsars (AXPs) are isolated neutron stars with superstrong magnetic
fields, i.e., magnetars, marking them a distinguished species from the
conventional species of spindown-powered isolated neutron stars, i.e., radio
pulsars. The current arguments in favor of the magnetar interpretation of
SGR/AXP phenomenology will be outlined, and the two energy sources in
magnetars, i.e. a magnetic dissipation energy and a spindown energy, will be
reviewed. I will then discuss a missing link between magnetars and pulsars,
i.e., lack of the observational evidence of the spindown-powered behaviors in
known magnetars. Some recent theoretical efforts in studying such behaviors
will be reviewed along with some predictions testable in the near future.Comment: Invited talk at the Sixth Pacific Rim Conference on Stellar
Astrophysics, a tribute to Helmut A. Abt, July 11-17, 2002, Xi'an. To appear
in the proceedings (eds. K. S. Cheng, K. C. Leung & T. P. Li
Compact Stars - How Exotic Can They Be?
Strong interaction physics under extreme conditions of high temperature
and/or density is of central interest in modern nuclear physics for
experimentalists and theorists alike. In order to investigate such systems,
model approaches that include hadrons and quarks in a unified approach, will be
discussed. Special attention will be given to high-density matter as it occurs
in neutron stars. Given the current observational limits for neutron star
masses, the properties of hyperonic and hybrid stars will be determined. In
this context especially the question of the extent, to which exotic particles
like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held
in Boppard (Germany), May 201
Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.
BACKGROUND: Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. RESULTS: We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. CONCLUSION: We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements
The Regge Limit for Green Functions in Conformal Field Theory
We define a Regge limit for off-shell Green functions in quantum field
theory, and study it in the particular case of conformal field theories (CFT).
Our limit differs from that defined in arXiv:0801.3002, the latter being only a
particular corner of the Regge regime. By studying the limit for free CFTs, we
are able to reproduce the Low-Nussinov, BFKL approach to the pomeron at weak
coupling. The dominance of Feynman graphs where only two high momentum lines
are exchanged in the t-channel, follows simply from the free field analysis. We
can then define the BFKL kernel in terms of the two point function of a simple
light-like bilocal operator. We also include a brief discussion of the gravity
dual predictions for the Regge limit at strong coupling.Comment: 23 pages 2 figures, v2: Clarification of relation of the Regge limit
defined here and previous work in CFT. Clarification of causal orderings in
the limit. References adde
Parity Doubling and the S Parameter Below the Conformal Window
We describe a lattice simulation of the masses and decay constants of the
lowest-lying vector and axial resonances, and the electroweak S parameter, in
an SU(3) gauge theory with and 6 fermions in the fundamental
representation. The spectrum becomes more parity doubled and the S parameter
per electroweak doublet decreases when is increased from 2 to 6,
motivating study of these trends as is increased further, toward the
critical value for transition from confinement to infrared conformality.Comment: 4 pages, 5 figures; to be submitted to PR
Determinants of adults' intention to vaccinate against pandemic swine flu
This article has been made available through the Brunel Open Access Publishing Fund.This article has been made available through the Brunel Open Access Publishing Fund.Background: Vaccination is one of the cornerstones of controlling an influenza pandemic. To optimise vaccination rates in the general population, ways of identifying determinants that influence decisions to have or not to have a vaccination need to be understood. Therefore, this study aimed to predict intention to have a swine influenza
vaccination in an adult population in the UK. An extension of the Theory of Planned Behaviour provided the theoretical framework for the study.
Methods: Three hundred and sixty two adults from the UK, who were not in vaccination priority groups, completed either an online (n = 306) or pen and paper (n = 56) questionnaire. Data were collected from 30th October 2009, just after swine flu vaccination became available in the UK, and concluded on 31st December 2009. The main outcome of interest was future swine flu vaccination intentions.
Results: The extended Theory of Planned Behaviour predicted 60% of adults’ intention to have a swine flu vaccination with attitude, subjective norm, perceived control, anticipating feelings of regret (the impact of missing a vaccination opportunity), intention to have a seasonal vaccine this year, one perceived barrier: “I cannot be bothered to get a swine flu vaccination” and two perceived benefits: “vaccination decreases my chance of getting swine flu or its complications” and “if I get vaccinated for swine flu, I will decrease the frequency of having to consult my doctor,” being significant predictors of intention. Black British were less likely to intend to have a vaccination compared to Asian or White respondents.
Conclusions: Theoretical frameworks which identify determinants that influence decisions to have a pandemic influenza vaccination are useful. The implications of this research are discussed with a view to maximising any future pandemic influenza vaccination uptake using theoretically-driven applications.This article is available through the Brunel Open Access Publishing Fund
High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT
Using the AdS/CFT correspondence, we study the high-energy behavior of
colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through
the Wilson loop correlator formalism and Euclidean to Minkowskian analytic
continuation. The purely elastic behavior obtained at large impact-parameter L,
through duality from disconnected AdS_5 minimal surfaces beyond the
Gross-Ooguri transition point, is combined with unitarity and analyticity
constraints in the central region. In this way we obtain an absolute bound on
the high-energy behavior of the forward scattering amplitude due to the
graviton interaction between minimal surfaces in the bulk. The dominant
"Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the
AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the
elastic eikonal approximation in a larger impact-parameter range gives alpha
between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the
elastic eikonal approximation within its maximally allowed range L larger than
exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at
large impact-parameter due to the other d=10 supergravity fields are obtained.
A divergence in the real part of the tachyonic KK scalar is cured by
analyticity but signals the need for a theoretical completion of the AdS/CFT
scheme.Comment: 25 pages, 3 eps figure
High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation
Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated
4-Phenylbutyric acid treatment rescues trafficking and processing of a mutant surfactant protein C
Mutations in the SFTPC gene, encoding surfactant protein–C (SP-C), are associated with interstitial lung disease (ILD). Knowledge of the intracellular fate of mutant SP-C is essential in the design of therapies to correct trafficking/processing of the proprotein, and to prevent the formation of cytotoxic aggregates. We assessed the potential of a chemical chaperone to correct the trafficking and processing of three disease-associated mutant SP-C proteins. HEK293 cells were stably transfected with wild-type (SP-C(WT)) or mutant (SP-C(L188Q), SP-C(Δexon4), or SP-C(I73T)) SP-C, and cell lines with a similar expression of SP-C mRNA were identified. The effects of the chemical chaperone 4-phenylbutyric acid (PBA) and lysosomotropic drugs on intracellular trafficking to the endolysosomal pathway and the subsequent conversion of SP-C proprotein to mature peptide were assessed. Despite comparable SP-C mRNA expression, proprotein concentrations varied greatly: SP-C(I73T) was more abundant than SP-C(WT) and was localized to the cell surface, whereas SP-C(Δexon4) was barely detectable. In contrast, SP-C(L188Q) and SP-C(WT) proprotein concentrations were comparable, and a small amount of SP-C(L188Q) was localized to the endolysosomal pathway. PBA treatment restored the trafficking and processing of SP-C(L188Q) to SP-C(WT) concentrations, but did not correct the mistrafficking of SP-C(I73T) or rescue SP-C(Δexon4). PBA treatment also promoted the aggregation of SP-C proproteins, including SP-C(L188Q). This study provides proof of the principle that a chemical chaperone can correct the mistrafficking and processing of a disease-associated mutant SP-C proprotein
Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways
Background: Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host.
Methodology/Principal Findings: Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior.
Conclusions: Results of this study indicate that A. abstrusus and T. brevior infective L3 are shed in the mucus of H. aspersa or in water where infected gastropods had died submerged. Both elimination pathways may represent alternative route(s) of environmental contamination and source of the infection for these nematodes under field conditions and may significantly affect the epidemiology of feline lungworms. Considering that snails may act as intermediate hosts for other metastrongyloid species, the environmental contamination by mucus-released larvae is discussed in a broader context
- …
