37 research outputs found

    Structural insights into the catalysis and regulation of E3 ubiquitin ligases

    Get PDF
    Covalent attachment (conjugation) of one or more ubiquitin molecules to protein substrates governs numerous eukaryotic cellular processes, including apoptosis, cell division and immune responses. Ubiquitylation was originally associated with protein degradation, but it is now clear that ubiquitylation also mediates processes such as protein–protein interactions and cell signalling depending on the type of ubiquitin conjugation. Ubiquitin ligases (E3s) catalyse the final step of ubiquitin conjugation by transferring ubiquitin from ubiquitin-conjugating enzymes (E2s) to substrates. In humans, more than 600 E3s contribute to determining the fates of thousands of substrates; hence, E3s need to be tightly regulated to ensure accurate substrate ubiquitylation. Recent findings illustrate how E3s function on a structural level and how they coordinate with E2s and substrates to meticulously conjugate ubiquitin. Insights regarding the mechanisms of E3 regulation, including structural aspects of their autoinhibition and activation are also emerging

    Phylogenetic relationships of the New World titi monkeys (Callicebus): First appraisal of taxonomy based on molecular evidence

    Get PDF
    Background: Titi monkeys, Callicebus, comprise the most species-rich primate genus-34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. Results: Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups-the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9-8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. Conclusions: Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups). © 2016 Byrne et al

    The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term

    Full text link

    Structural insights into the catalysis and regulation of E3 ubiquitin ligases

    Full text link

    Biparental expression of ESX1L gene in placentas from normal and intrauterine growth-restricted pregnancies

    Get PDF
    Equivalent levels of X-linked gene products between males and females are reached by means of X chromosome inactivation (XCI). In the human and murine embryonic tissues, both the paternally and maternally derived X chromosomes (X P and X M) may be inactivated. In murine extra-embryonic tissues, X P is imprinted and always silenced; humans, unlike mice, can inactivate the X M in extra-embryonic lineages without an adverse outcome. This difference is probably due to the presence of imprinted placental genes on the murine X chromosome, but not on the human homologue, essential for placental development and function. An example is the paternally imprinted Esx1 gene; mice with a null maternally derived Esx1 allele show intrauterine growth restriction (IUGR) because of placental insufficiency. We investigated the imprinting status of the human orthologous Esx1 gene (ESX1L) in placental samples of four normal full-term and 13 IUGR female fetuses, in which we determined the XCI pattern. Our findings demonstrated that IUGR as well as normal placentas display XCI heterogeneity, thus indicating that the IUGR phenotype is not correlated with a preferential pattern of XCI in placentas. Moreover, ESX1L is equally expressed in IUGR and normal placentas, and shows the same methylation pattern in the presence of both random and skewed XCI. These findings provide evidence that ESX1L is not imprinted in human third-trimester placentas and there is no parent-of-origin effect of chromosome X associated with placental insufficiency
    corecore