37 research outputs found
New approaches to high-resolution mapping of marine vertical structures
Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures
Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain
The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed
Nebulisation of synthetic lamellar lipids mitigates radiation-induced lung injury in a large animal model
Item originally deposited in University of Edinburgh, Edinburgh Research Explorer Repository at: https://www.research.ed.ac.uk/portal/en/publications/nebulisation-of-synthetic-lamellar-lipids-mitigates-radiationinduced-lung-injury-in-a-large-animal-model(ab917c99-7e7f-4fa1-8d1e-40511ca9abd3).htmlMethods to protect against radiation-induced lung injury (RILI) will facilitate the development of more effective radio-therapeutic protocols for lung cancer and may provide the means to protect the wider population in the event of a deliberate or accidental nuclear or radiological event. We hypothesised that supplementing lipid membranes through nebulization of synthetic lamellar lipids would mitigate RILI. Following pre-treatment with either nebulised lamellar lipids or saline, anaesthetised sheep were prescribed fractionated radiotherapy (30 Gray (Gy) total dose in five 6 Gy fractions at 3–4 days intervals) to a defined unilateral lung volume. Gross pathology in radio-exposed lung 37 days after the first radiation treatment was consistent between treatment groups and consisted of deep red congestion evident on the pleural surface and firmness on palpation. Consistent histopathological features in radio-exposed lung were subpleural, periarteriolar and peribronchial intra-alveolar oedema, alveolar fibrosis, interstitial pneumonia and type II pneumocyte hyperplasia. The synthetic lamellar lipids abrogated radiation-induced alveolar fibrosis and reduced alpha-smooth muscle actin (ASMA) expression in radio-exposed lung compared to saline treated sheep. Administration of synthetic lamellar lipids was also associated with an increased number of cells expressing dendritic cell-lysosomal associated membrane protein throughout the lung.This work was supported by Grant MRC/CIC3/025 awarded to D.C., J.L., J.M., G.M. & J.P. The authors wish to acknowledge the assistance of Dryden Animal Services in the conduct of this work, and the assistance of Dr Helen Brown in relation to experimental design and statistical analysis. The authors are grateful to Lamellar Biomedical Ltd., Strathclyde Business Park, Bellshill, Scotland, United Kingdom, for the supply of LAMELLASOME™ used in this research.8pubpubArticle no: 1331
ROVs and AUVs
The most significant breakthroughs in science are often made as a result of technological developments and innovation. A new capacity to gather more data, measure more precisely or make entirely new observations generally leads to new insights and fundamental understanding. The future of ocean research and exploration therefore lies in robotics: marine robotic systems can be deployed at depths and in environments that are out of direct reach for humans, they can work around the clock, and they can be autonomous, freeing up time and money for other activities. To advance the field of submarine geomorphology, the two types of robots that currently make the biggest difference are Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs). Other autonomous or robotic systems are available for marine research (e.g. gliders, autonomous surface vehicles, benthic crawlers etc.), but their application for geomorphological studies is less extensive. This chapter gives an overview of the main characteristics of ROVs and AUVs, their advantages and disadvantages, and their main applications for geomorphological research. In comparison to the other geomorphological methods discussed in this book, however, it has to be made clear that ROVs and AUVs are not so much methods per se, instead they are platforms from which existing and new approaches can be applied