59 research outputs found

    Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras

    Get PDF
    Aim: To test the latitudinal gradient in plant species diversity for self-similarity across taxonomic scales and amongst taxa. Location: North America. Methods: We used species richness data from 245 local vascular plant floras to quantify the slope and shape of the latitudinal gradients in species diversity (LGSD) across all plant species as well as within each family and order. We calculated the contribution of each family and order to the empirical LGSD. Results: We observed the canonical LGSD when all plants were considered with floras at the lowest latitudes having, on average, 451 more species than floras at the highest latitudes. When considering slope alone, most orders and families showed the expected negative slope, but 31.7% of families and 27.7% of orders showed either no significant relationship between latitude and diversity or a reverse LGSD. Latitudinal patterns of family diversity account for at least 14% of this LGSD. Most orders and families did not show the negative slope and concave-down quadratic shape expected by the pattern for all plant species. A majority of families did not make a significant contribution in species to the LGSD with 53% of plant families contributing little to nothing to the overall gradient. Ten families accounted for more than 70% of the gradient. Two families, the Asteraceae and Fabaceae, contributed a third of the LGSD. Main Conclusions: The empirical LGSD we describe here is a consequence of a gradient in the number of families and diversification within relative few plant families. Macroecological studies typically aim to generate models that are general across taxa with the implicit assumption that the models are general within taxa. Our results strongly suggest that models of the latitudinal gradient in plant species richness that rely on environmental covariates (e.g. temperature, energy) are likely not general across plant taxa

    Effects of Total Resources, Resource Ratios, and Species Richness on Algal Productivity and Evenness at Both Metacommunity and Local Scales

    Get PDF
    The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships

    The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments

    Get PDF
    The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning

    Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics

    Get PDF
    Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics

    Roles of spatial scale and rarity on the relationship between butterfly species richness and human density in South Africa

    Get PDF
    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2′ to 60′ across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation
    corecore