51 research outputs found
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution
of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the
associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local
management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef
fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions
and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the
1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites
and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure,
diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale
integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales,
with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas
still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance.
This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should
be integrated into existing management frameworks and combined with policies to improve system-wide resilience to
climate variation and change
The Lagoon at Caroline/Millennium Atoll, Republic of Kiribati: Natural History of a Nearly Pristine Ecosystem
A series of surveys were carried out to characterize the physical and biological parameters of the Millennium Atoll lagoon during a research expedition in April of 2009. Millennium is a remote coral atoll in the Central Pacific belonging to the Republic of Kiribati, and a member of the Southern Line Islands chain. The atoll is among the few remaining coral reef ecosystems that are relatively pristine. The lagoon is highly enclosed, and was characterized by reticulate patch and line reefs throughout the center of the lagoon as well as perimeter reefs around the rim of the atoll. The depth reached a maximum of 33.3 m in the central region of the lagoon, and averaged between 8.8 and 13.7 m in most of the pools. The deepest areas were found to harbor large platforms of Favia matthaii, which presumably provided a base upon which the dominant corals (Acropora spp.) grew to form the reticulate reef structure. The benthic algal communities consisted mainly of crustose coralline algae (CCA), microfilamentous turf algae and isolated patches of Halimeda spp. and Caulerpa spp. Fish species richness in the lagoon was half of that observed on the adjacent fore reef. The lagoon is likely an important nursery habitat for a number of important fisheries species including the blacktip reef shark and Napoleon wrasse, which are heavily exploited elsewhere around the world but were common in the lagoon at Millennium. The lagoon also supports an abundance of giant clams (Tridacna maxima). Millennium lagoon provides an excellent reference of a relatively undisturbed coral atoll. As with most coral reefs around the world, the lagoon communities of Millennium may be threatened by climate change and associated warming, acidification and sea level rise, as well as sporadic local resource exploitation which is difficult to monitor and enforce because of the atoll's remote location. While the remote nature of Millennium has allowed it to remain one of the few nearly pristine coral reef ecosystems in the world, it is imperative that this ecosystem receives protection so that it may survive for future generations
Abrolhos Bank Reef Health Evaluated by Means of Water Quality, Microbial Diversity, Benthic Cover, and Fish Biomass Data
The health of the coral reefs of the Abrolhos Bank (southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the “paper park” of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens
Assessing early memories of threat and subordination: Confirmatory factor analyisis of the early life experiences scale for adolescents.
The Early Life Experiences Scale (ELES) is a self-report questionnaire that assesses personal feelings of perceived threat and submissiveness in interactions within family. This paper presents the adaptation and validation of the ELES in Portuguese language for adolescents. The sample was composed of 771 adolescents from community schools with ages between 13 and 18 years old. Along with ELES, participants also answered the Early Memories of Warmth and Safeness Scale and the Positive and Negative Affect Schedule for Children and Adolescents. Confirmatory factor analysis (CFA) was performed to test the factor structure of the ELES and results confirm a three-factor structure, composed by Threat, Submissiveness and Unvalued dimensions. These emotional memories focused on perceived threat, submissiveness and unvalued seem to have a distinct nature. The scale also showed adequate internal consistency, good test-retest reliability and convergent validity with measures of positive emotional memories, positive and negative affect. There were sex differences for threat subscale and age differences for submissiveness subscale. Overall, these findings suggest that the ELES in its Portuguese version for adolescents may be a useful tool for research, educational and clinical contexts with school-aged adolescents
Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities
BACKGROUND: Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. METHODOLOGY/PRINCIPAL FINDINGS: Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. CONCLUSIONS/SIGNIFICANCE: Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable
Herbivory, Connectivity, and Ecosystem Resilience: Response of a Coral Reef to a Large-Scale Perturbation
Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience
A Positive trajectory for corals at Little Cayman Island
Coral reefs are damaged by natural disturbances and local and global anthropogenic stresses. As stresses intensify, so do debates about whether reefs will recover after significant damage. True headway in this debate requires documented temporal trajectories for coral assemblages subjected to various combinations of stresses; therefore, we report relevant changes in coral assemblages at Little Cayman Island. Between 1999 and 2012, spatiotemporal patterns in cover, densities of juveniles and size structure of assemblages were documented inside and outside marine protected areas using transects, quadrats and measurements of maximum diameters. Over five years, bleaching and disease caused live cover to decrease from 26% to 14%, with full recovery seven years later. Juvenile densities varied, reaching a maximum in 2010. Both patterns were consistent within and outside protected areas. In addition, dominant coral species persisted within and outside protected areas although their size frequency distributions varied temporally and spatially. The health of the coral assemblage and the similarity of responses across levels of protection suggested that negligible anthropogenic disturbance at the local scale was a key factor underlying the observed resilience
- …