151 research outputs found

    Shift in epitope dominance of IgM and IgG responses to Plasmodium falciparum MSP1 block 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>merozoite surface protein-1 (MSP1) has been extensively studied as a blood-stage malaria vaccine candidate, with most work focused on the conserved 19 kDa and semi-conserved 42 kDa C-terminal regions (blocks 16-17) and the hypervariable N-terminal repeat region (block 2). However, recent genotyping studies suggest that additional regions of MSP1 may be under selective pressure, including a locus of intragenic recombination designated as block 4 within the 3' region of the gene.</p> <p>Methods</p> <p>The current study examined the antibody response to the two parental and two recombinant forms of block 4 and to blocks 16-17 (3D7) in study populations from Colombia, Papua New Guinea and Cameroon that differ in malaria transmission intensity and ethnic composition.</p> <p>Results</p> <p>IgM and IgG antibodies were detected against parental and recombinant MSP1 block 4 peptides in all three populations. Overall, 32-44% of the individuals produced IgM to one or more of the peptides, with most individuals having IgM antibodies reactive with both parental and recombinant forms. In contrast, IgG seropositivity to block 4 varied among populations (range 15-65%), with the majority of antibodies showing specificity for one or a pair of block 4 peptides. The IgG response to block 4 was significantly lower than that to blocks 16-17, indicating block 4 is subdominant. Antibodies to block 4 and blocks 16-17 displayed distinct IgG subclass biases, with block 4 responses biased toward IgG3 and blocks 16-17 toward IgG1. These patterns of responsiveness were consistently observed in the three study populations.</p> <p>Conclusions</p> <p>Production of antibodies specific for each parental and recombinant MSP1 block 4 allele in different populations exposed to <it>P. falciparum </it>is consistent with balancing selection of the MSP1 block 4 region by the immune response of individuals in areas of both low and high malaria transmission. MSP1 block 4 determinants may be important in isolate-specific immunity to <it>P. falciparum</it>.</p

    Mechanism of Human Papillomavirus Binding to Human Spermatozoa and Fertilizing Ability of Infected Spermatozoa

    Get PDF
    Human papillomaviruses (HPVs) are agents of the most common sexually transmitted diseases in females and males. Precise data about the presence, mechanism of infection and clinical significance of HPV in the male reproductive tract and especially in sperm are not available. Here we show that HPV can infect human sperm, it localizes at the equatorial region of sperm head through interaction between the HPV capsid protein L1 and syndecan-1. Sperm transfected with HPV E6/E7 genes and sperm exposed to HPV L1 capsid protein are capable to penetrate the oocyte and transfer the virus into oocytes, in which viral genes are then activated and transcribed. These data show that sperm might function as vectors for HPV transfer into the oocytes, and open new perspectives on the role of HPV infection in males and are particularly intriguing in relation to assisted reproduction techniques

    A Pan-HPV Vaccine Based on Bacteriophage PP7 VLPs Displaying Broadly Cross-Neutralizing Epitopes from the HPV Minor Capsid Protein, L2

    Get PDF
    Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts

    Atrial arrhythmogenesis in wild-type and Scn5a+/Δ murine hearts modelling LQT3 syndrome

    Get PDF
    Long QT(3) (LQT3) syndrome is associated with abnormal repolarisation kinetics, prolonged action potential durations (APD) and QT intervals and may lead to life-threatening ventricular arrhythmias. However, there have been few physiological studies of its effects on atrial electrophysiology. Programmed electrical stimulation and burst pacing induced atrial arrhythmic episodes in 16 out of 16 (16/16) wild-type (WT) and 7/16 genetically modified Scn5a+/Δ (KPQ) Langendorff-perfused murine hearts modelling LQT3 (P < 0.001 for both), and in 14/16 WT and 1/16 KPQ hearts (P < 0.001 for both; Fisher’s exact test), respectively. The arrhythmogenic WT hearts had significantly larger positive critical intervals (CI), given by the difference between atrial effective refractory periods (AERPs) and action potential durations at 90% recovery (APD90), compared to KPQ hearts (8.1 and 3.2 ms, respectively, P < 0.001). Flecainide prevented atrial arrhythmias in all arrhythmogenic WT (P < 0.001) and KPQ hearts (P < 0.05). It prolonged the AERP to a larger extent than it did the APD90 in both WT and KPQ groups, giving negative CIs. Quinidine similarly exerted anti-arrhythmic effects, prolonged AERP over corresponding APD90 in both WT and KPQ groups. These findings, thus, demonstrate, for the first time, inhibitory effects of the KPQ mutation on atrial arrhythmogenesis and its modification by flecainide and quinidine. They attribute these findings to differences in the CI between WT and mutant hearts, in the presence or absence of these drugs. Thus, prolongation of APD90 over AERP gave positive CI values and increased atrial arrhythmogenicity whereas lengthening of AERP over APD90 reduced such CI values and produced the opposite effect

    Cohort profile: the German Diabetes Study (GDS)

    Full text link

    Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity

    Get PDF
    Life is a combustion, but how the major fuel substrates that sustain human life compete and interact with each other for combustion has been at the epicenter of research into the pathogenesis of insulin resistance ever since Randle proposed a 'glucose-fatty acid cycle' in 1963. Since then, several features of a mutual interaction that is characterized by both reciprocality and dependency between glucose and lipid metabolism have been unravelled, namely: 1. the inhibitory effects of elevated concentrations of fatty acids on glucose oxidation (via inactivation of mitochondrial pyruvate dehydrogenase or via desensitization of insulin-mediated glucose transport), 2. the inhibitory effects of elevated concentrations of glucose on fatty acid oxidation (via malonyl-CoA regulation of fatty acid entry into the mitochondria), and more recently 3. the stimulatory effects of elevated concentrations of glucose on de novo lipogenesis, that is, synthesis of lipids from glucose (via SREBP1c regulation of glycolytic and lipogenic enzymes). This paper first revisits the physiological significance of these mutual interactions between glucose and lipids in skeletal muscle pertaining to both blood glucose and intramyocellular lipid homeostasis. It then concentrates upon emerging evidence, from calorimetric studies investigating the direct effect of leptin on thermogenesis in intact skeletal muscle, of yet another feature of the mutual interaction between glucose and lipid oxidation: that of substrate cycling between de novo lipogenesis and lipid oxidation. It is proposed that this energy-dissipating substrate cycling that links glucose and lipid metabolism to thermogenesis could function as a 'fine-tuning' mechanism that regulates intramyocellular lipid homeostasis, and hence contributes to the protection of skeletal muscle against lipotoxicity

    Autoacetylation of the Ralstonia solanacearum Effector PopP2 Targets a Lysine Residue Essential for RRS1-R-Mediated Immunity in Arabidopsis

    Get PDF
    Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as “guards”. The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity

    Factors influencing nurses' compliance with Standard Precautions in order to avoid occupational exposure to microorganisms: A focus group study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nurses may acquire an infection during the provision of nursing care because of occupational exposure to microorganisms. Relevant literature reports that, compliance with Standard Precautions (a set of guidelines that can protect health care professionals from being exposed to microorganisms) is low among nurses. Additionally, high rates of exposure to microorganisms among nurses via several modes (needlesticks, hand contamination with blood, exposure to air-transmitted microorganisms) occur. The aim of the study was to study the factors that influence nurses' compliance with Standard Precaution in order to avoid occupational exposure to pathogens, by employing a qualitative research design.</p> <p>Method</p> <p>A focus group approach was used to explore the issue under study. Four focus groups (N = 30) were organised to elicit nurses' perception of the factors that influence their compliance with Standard Precautions. The Health Belief Model (HBM) was used as the theoretical framework and the data were analysed according to predetermined criteria.</p> <p>Results</p> <p>Following content analysis, factors that influence nurses' compliance emerged. Most factors could be applied to one of the main domains of the HBM: benefits, barriers, severity, susceptibility, cues to action, and self-efficacy.</p> <p>Conclusions</p> <p>Changing current behavior requires knowledge of the factors that may influence nurses' compliance with Standard Precautions. This knowledge will facilitate in the implementation of programs and preventive actions that contribute in avoiding of occupational exposure.</p

    miRNAs at the heart of the matter

    Get PDF
    Cardiovascular disease is among the main causes of morbidity and mortality in developed countries. The pathological process of the heart is associated with altered expression profile of genes that are important for cardiac function. MicroRNAs (miRNAs) have emerged as one of the central players of gene expression regulation. The implications of miRNAs in the pathological process of cardiovascular system have recently been recognized, representing the most rapidly evolving research field. Here, we summarize and analyze the currently available data from our own laboratory and other groups, providing a comprehensive overview of miRNA function in the heart, including a brief introduction of miRNA biology, expression profile of miRNAs in cardiac tissue, role of miRNAs in cardiac hypertrophy and heart failure, the arrhythmogenic potential of miRNAs, the involvement of miRNAs in vascular angiogenesis, and regulation of cardiomyocyte apoptosis by miRNAs. The target genes and signaling pathways linking the miRNAs to cardiovascular disease are highlighted. The applications of miRNA interference technologies for manipulating miRNA expression, stability, and function as new strategies for molecular therapy of human disease are evaluated. Finally, some specific issues related to future directions of the research on miRNAs relevant to cardiovascular disease are pinpointed and speculated
    corecore