55 research outputs found
Gravitational detection of a low-mass dark satellite at cosmological distance
The mass-function of dwarf satellite galaxies that are observed around Local
Group galaxies substantially differs from simulations based on cold dark
matter: the simulations predict many more dwarf galaxies than are seen. The
Local Group, however, may be anomalous in this regard. A massive dark satellite
in an early-type lens galaxy at z = 0.222 was recently found using a new method
based on gravitational lensing, suggesting that the mass fraction contained in
substructure could be higher than is predicted from simulations. The lack of
very low mass detections, however, prohibited any constraint on their mass
function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark
satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun
denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius
galaxy, which is a satellite of the Milky Way. We determine the logarithmic
slope of the mass function for substructure beyond the local Universe to be
alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by
combining data on both of these recently discovered galaxies. Our results are
consistent with the predictions from cold dark matter simulations at the 95 per
cent confidence level, and therefore agree with the view that galaxies formed
hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January
2012
Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function
We evaluate the one loop determinant of matter multiplet fields of N=4
supergravity in the near horizon geometry of quarter BPS black holes, and use
it to calculate logarithmic corrections to the entropy of these black holes
using the quantum entropy function formalism. We show that even though
individual fields give non-vanishing logarithmic contribution to the entropy,
the net contribution from all the fields in the matter multiplet vanishes. Thus
logarithmic corrections to the entropy of quarter BPS black holes, if present,
must be independent of the number of matter multiplet fields in the theory.
This is consistent with the microscopic results. During our analysis we also
determine the complete spectrum of small fluctuations of matter multiplet
fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
Lipid Alterations in Experimental Murine Colitis: Role of Ceramide and Imipramine for Matrix Metalloproteinase-1 Expression
BACKGROUND:Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD). Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction. METHODOLOGY/PRINCIPAL FINDINGS:Chronic colitis was induced by dextran-sulphate-sodium (DSS) or transfer of CD4(+)CD62L(+) cells into RAG1(-/-)-mice. Lipid content of isolated murine intestinal epithelial cells (IEC) was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM). Ceramide increased by 71% in chronic DSS-induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC) decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1beta in Caco-2-IEC and human intestinal fibroblasts. CONCLUSIONS/SIGNIFICANCE:Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1beta is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions
Entanglement entropy of black holes
The entanglement entropy is a fundamental quantity which characterizes the
correlations between sub-systems in a larger quantum-mechanical system. For two
sub-systems separated by a surface the entanglement entropy is proportional to
the area of the surface and depends on the UV cutoff which regulates the
short-distance correlations. The geometrical nature of the entanglement entropy
calculation is particularly intriguing when applied to black holes when the
entangling surface is the black hole horizon. I review a variety of aspects of
this calculation: the useful mathematical tools such as the geometry of spaces
with conical singularities and the heat kernel method, the UV divergences in
the entropy and their renormalization, the logarithmic terms in the
entanglement entropy in 4 and 6 dimensions and their relation to the conformal
anomalies. The focus in the review is on the systematic use of the conical
singularity method. The relations to other known approaches such as 't Hooft's
brick wall model and the Euclidean path integral in the optical metric are
discussed in detail. The puzzling behavior of the entanglement entropy due to
fields which non-minimally couple to gravity is emphasized. The holographic
description of the entanglement entropy of the black hole horizon is
illustrated on the two- and four-dimensional examples. Finally, I examine the
possibility to interpret the Bekenstein-Hawking entropy entirely as the
entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in
Relativit
Network Economics and the Environment: Insights and Perspectives
Local interactions and network structures appear to be a prominent feature of many environmental problems. This paper discusses a wide range of issues and potential areas of application, including the role of relational networks in the pattern of adoption of green technologies, common pool resource problems characterized by a multiplicity of sources, the role of social networks in multi-level environmental governance, infrastructural networks in the access to and use of natural resources such as oil and natural gas, the use of networks to describe the internal structure of inter-country relations in international agreements, and the formation of bilateral "links" in the process of building up an environmental coalition. For each of these areas, we examine why and how network economics would be an effective conceptual and analytical tool, and discuss the main insights that we can foresee
- …