187 research outputs found

    Neural Signatures of Prediction Errors in a Decision-Making Task are Modulated by Action Execution Failures

    Get PDF
    Decisions must be implemented through actions, and actions are prone to error. As such, when an expected outcome is not obtained, an individual should be sensitive to not only whether the choice itself was suboptimal but also whether the action required to indicate that choice was executed successfully. The intelligent assignment of credit to action execution versus action selection has clear ecological utility for the learner. To explore this, we used a modified version of a classic reinforcement learning task in which feedback indicated whether negative prediction errors were, or were not, associated with execution errors. Using fMRI, we asked if prediction error computations in the human striatum, a key substrate in reinforcement learning and decision making, are modulated when a failure in action execution results in the negative outcome. Participants were more tolerant of non-rewarded outcomes when these resulted from execution errors versus when execution was successful, but reward was withheld. Consistent with this behavior, a model-driven analysis of neural activity revealed an attenuation of the signal associated with negative reward prediction errors in the striatum following execution failures. These results converge with other lines of evidence suggesting that prediction errors in the mesostriatal dopamine system integrate high-level information during the evaluation of instantaneous reward outcomes

    The Context of Temporal Processing Is Represented in the Multidimensional Relationships between Timing Tasks

    Get PDF
    In the present study we determined the performance interrelations of ten different tasks that involved the processing of temporal intervals in the subsecond range, using multidimensional analyses. Twenty human subjects executed the following explicit timing tasks: interval categorization and discrimination (perceptual tasks), and single and multiple interval tapping (production tasks). In addition, the subjects performed a continuous circle-drawing task that has been considered an implicit timing paradigm, since time is an emergent property of the produced spatial trajectory. All tasks could be also classified as single or multiple interval paradigms. Auditory or visual markers were used to define the intervals. Performance variability, a measure that reflects the temporal and non-temporal processes for each task, was used to construct a dissimilarity matrix that quantifies the distances between pairs of tasks. Hierarchical clustering and multidimensional scaling were carried out on the dissimilarity matrix, and the results showed a prominent segregation of explicit and implicit timing tasks, and a clear grouping between single and multiple interval paradigms. In contrast, other variables such as the marker modality were not as crucial to explain the performance between tasks. Thus, using this methodology we revealed a probable functional arrangement of neural systems engaged during different timing behaviors

    Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control

    Get PDF
    It is widely accepted that the complex dynamics characteristic of recurrent neural circuits contributes in a fundamental manner to brain function. Progress has been slow in understanding and exploiting the computational power of recurrent dynamics for two main reasons: nonlinear recurrent networks often exhibit chaotic behavior and most known learning rules do not work in robust fashion in recurrent networks. Here we address both these problems by demonstrating how random recurrent networks (RRN) that initially exhibit chaotic dynamics can be tuned through a supervised learning rule to generate locally stable neural patterns of activity that are both complex and robust to noise. The outcome is a novel neural network regime that exhibits both transiently stable and chaotic trajectories. We further show that the recurrent learning rule dramatically increases the ability of RRNs to generate complex spatiotemporal motor patterns, and accounts for recent experimental data showing a decrease in neural variability in response to stimulus onset

    Long-Range Correlation in Synchronization and Syncopation Tapping: A Linear Phase Correction Model

    Get PDF
    We propose in this paper a model for accounting for the increase in long-range correlations observed in asynchrony series in syncopation tapping, as compared with synchronization tapping. Our model is an extension of the linear phase correction model for synchronization tapping. We suppose that the timekeeper represents a fractal source in the system, and that a process of estimation of the half-period of the metronome, obeying a random-walk dynamics, combines with the linear phase correction process. Comparing experimental and simulated series, we show that our model allows accounting for the experimentally observed pattern of serial dependence. This model complete previous modeling solutions proposed for self-paced and synchronization tapping, for a unifying framework of event-based timing

    Distinct Neural Signatures of Outcome Monitoring After Selection and Execution Errors

    Get PDF
    Losing a point in tennis could result from poor shot selection or faulty stroke execution. To explore how the brain responds to these different types of errors, we examined feedback-locked EEG activity while participants completed a modified version of a standard three-armed bandit probabilistic reward task. Our task framed unrewarded outcomes as the result of either errors of selection or errors of execution. We examined whether amplitude of a medial frontal negativity (the feedback-related negativity [FRN]) was sensitive to the different forms of error attribution. Consistent with previous reports, selection errors elicited a large FRN relative to rewards, and amplitude of this signal correlated with behavioral adjustment after these errors. A different pattern was observed in response to execution errors. These outcomes produced a larger FRN, a frontocentral attenuation in activity preceding this component, and a subsequent enhanced error positivity in parietal sites. Notably, the only correlations with behavioral adjustment were with the early frontocentral attenuation and amplitude of the parietal signal; FRN differences between execution errors and rewarded trials did not correlate with subsequent changes in behavior. Our findings highlight distinct neural correlates of selection and execution error processing, providing insight into how the brain responds to the different classes of error that determine future action

    Representations of time in human frontoparietal cortex

    Get PDF
    Precise time estimation is crucial in perception, action and social interaction. Previous neuroimaging studies in humans indicate that perceptual timing tasks involve multiple brain regions; however, whether the representation of time is localized or distributed in the brain remains elusive. Using ultra-high-field functional magnetic resonance imaging combined with multivariate pattern analyses, we show that duration information is decoded in multiple brain areas, including the bilateral parietal cortex, right inferior frontal gyrus and, albeit less clearly, the medial frontal cortex. Individual differences in the duration judgment accuracy were positively correlated with the decoding accuracy of duration in the right parietal cortex, suggesting that individuals with a better timing performance represent duration information in a more distinctive manner. Our study demonstrates that although time representation is widely distributed across frontoparietal regions, neural populations in the right parietal cortex play a crucial role in time estimation

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability

    Cross-Modal Distortion of Time Perception: Demerging the Effects of Observed and Performed Motion

    Get PDF
    Temporal information is often contained in multi-sensory stimuli, but it is currently unknown how the brain combines e.g. visual and auditory cues into a coherent percept of time. The existing studies of cross-modal time perception mainly support the “modality appropriateness hypothesis”, i.e. the domination of auditory temporal cues over visual ones because of the higher precision of audition for time perception. However, these studies suffer from methodical problems and conflicting results. We introduce a novel experimental paradigm to examine cross-modal time perception by combining an auditory time perception task with a visually guided motor task, requiring participants to follow an elliptic movement on a screen with a robotic manipulandum. We find that subjective duration is distorted according to the speed of visually observed movement: The faster the visual motion, the longer the perceived duration. In contrast, the actual execution of the arm movement does not contribute to this effect, but impairs discrimination performance by dual-task interference. We also show that additional training of the motor task attenuates the interference, but does not affect the distortion of subjective duration. The study demonstrates direct influence of visual motion on auditory temporal representations, which is independent of attentional modulation. At the same time, it provides causal support for the notion that time perception and continuous motor timing rely on separate mechanisms, a proposal that was formerly supported by correlational evidence only. The results constitute a counterexample to the modality appropriateness hypothesis and are best explained by Bayesian integration of modality-specific temporal information into a centralized “temporal hub”

    Distinct Timing Mechanisms Produce Discrete and Continuous Movements

    Get PDF
    The differentiation of discrete and continuous movement is one of the pillars of motor behavior classification. Discrete movements have a definite beginning and end, whereas continuous movements do not have such discriminable end points. In the past decade there has been vigorous debate whether this classification implies different control processes. This debate up until the present has been empirically based. Here, we present an unambiguous non-empirical classification based on theorems in dynamical system theory that sets discrete and continuous movements apart. Through computational simulations of representative modes of each class and topological analysis of the flow in state space, we show that distinct control mechanisms underwrite discrete and fast rhythmic movements. In particular, we demonstrate that discrete movements require a time keeper while fast rhythmic movements do not. We validate our computational findings experimentally using a behavioral paradigm in which human participants performed finger flexion-extension movements at various movement paces and under different instructions. Our results demonstrate that the human motor system employs different timing control mechanisms (presumably via differential recruitment of neural subsystems) to accomplish varying behavioral functions such as speed constraints

    Distortions of Subjective Time Perception Within and Across Senses

    Get PDF
    Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
    corecore