1,100 research outputs found

    On the kinematics of the Local cosmic void

    Full text link
    We collected the existing data on the distances and radial velocities of galaxies around the Local Void in the Aquila/Hercules to examine the peculiar velocity field induced by its underdensity. A sample of 1056 galaxies with distances measured from the Tip of the Red Giant Branch, the Cepheid luminosity, the SNIa luminosity, the surface brightness fluctuation method, and the Tully-Fisher relation has been used for this purpose. The amplitude of outflow is found to be ~300 km/s. The galaxies located within the void produce the mean intra-void number density about 1/5 of the mean external number density of galaxies. The void's population has a lower luminosity and a later morphological type with the medians: M_B = -15.7^m and T = 8 (Sdm), respectively.Comment: Version 1. 14 pages, 8 figures, 2 tables. Accepted to Astrophysics, Volume 54, Issue

    Thermodynamic instability of doubly spinning black objects

    Full text link
    We investigate the thermodynamic stability of neutral black objects with (at least) two angular momenta. We use the quasilocal formalism to compute the grand canonical potential and show that the doubly spinning black ring is thermodynamically unstable. We consider the thermodynamic instabilities of ultra-spinning black objects and point out a subtle relation between the microcanonical and grand canonical ensembles. We also find the location of the black string/membrane phases of doubly spinning black objects.Comment: 25 pages, 7 figures v2: matches the published versio

    Pathologies in Asymptotically Lifshitz Spacetimes

    Full text link
    There has been significant interest in the last several years in studying possible gravitational duals, known as Lifshitz spacetimes, to anisotropically scaling field theories by adding matter to distort the asymptotics of an AdS spacetime. We point out that putative ground state for the most heavily studied example of such a spacetime, that with a flat spatial section, suffers from a naked singularity and further point out this singularity is not resolvable by any known stringy effect. We review the reasons one might worry that asymptotically Lifshitz spacetimes are unstable and employ the initial data problem to study the stability of such systems. Rather surprisingly this question, and even the initial value problem itself, for these spacetimes turns out to generically not be well-posed. A generic normalizable state will evolve in such a way to violate Lifshitz asymptotics in finite time. Conversely, enforcing the desired asymptotics at all times puts strong restrictions not just on the metric and fields in the asymptotic region but in the deep interior as well. Generically, even perturbations of the matter field of compact support are not compatible with the desired asymptotics.Comment: 36 pages, 1 figure, v2: Enhanced discussion of singularity, including relationship to Gubser's conjecture and singularity in RG flow solution, plus minor clarification

    Fractal dimension of large aggregates under different flocculation conditions

    Get PDF
    The two-dimensional fractal dimension (Df) of large aggregates of kaolin (> 540 ÎŒm) during the shear flocculation process for kaolin solution was investigated using non-intrusive in situ image-based acquisition system. Separate experiments were also carried out for three different sized sub-ranges of large aggregates (0.540–1.125 mm; 1.125–1.750 mm; 1.750–2.375 mm). Digital images were taken at a frequency of 10 Hz for 10 s for each different pairs of gradients of velocity (Gf) of 20 and 60 s− 1 and flocculation times of 2; 3; 4; 5; 10; 20; 30; 60; 120 and 180 min. For the same conditions, particle size distribution (PSD) was also determined. Under the investigated conditions, the lowest Gf produced the greatest Df (1.69) at a flocculation time of 30 min for the whole range of aggregates. Also, the evolution of the longest length of aggregate (l) and Df with time, showed that the dynamic steady-state was reached at different times for each shear rate and l ranges. However, Df varied for each size sub-range (ca. 1.1 to 1.8). Finally, the behavior of the aggregate structure may be understood by the predominance of different aggregation mechanisms such as cluster-cluster for Gf of 60 s− 1 and particle-cluster for Gf of 20 s− 1

    Optimal jet radius in kinematic dijet reconstruction

    Get PDF
    Obtaining a good momentum reconstruction of a jet is a compromise between taking it large enough to catch the perturbative final-state radiation and small enough to avoid too much contamination from the underlying event and initial-state radiation. In this paper, we compute analytically the optimal jet radius for dijet reconstructions and study its scale dependence. We also compare our results with previous Monte-Carlo studies.Comment: 30 pages, 11 figures; minor corrections; published in JHE

    Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations

    Get PDF
    The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health

    Gauss-Bonnet Black Holes and Heavy Fermion Metals

    Full text link
    We consider charged black holes in Einstein-Gauss-Bonnet Gravity with Lifshitz boundary conditions. We find that this class of models can reproduce the anomalous specific heat of condensed matter systems exhibiting non-Fermi-liquid behaviour at low temperatures. We find that the temperature dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet coupling parameter for a given value of the Lifshitz scaling parameter. We propose that this class of models is dual to a class of models of non-Fermi-liquid systems proposed by Castro-Neto et.al.Comment: 17 pages, 6 figures, pdfLatex; small corrections to figure 10 in this versio

    Rotating black holes with equal-magnitude angular momenta in d=5 Einstein-Gauss-Bonnet theory

    Full text link
    We construct rotating black hole solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. These black holes are asymptotically flat, and possess a regular horizon of spherical topology and two equal-magnitude angular momenta associated with two distinct planes of rotation. The action and global charges of the solutions are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of Einstein-Gauss-Bonnet theory. We discuss the general properties of these black holes and study their dependence on the Gauss-Bonnet coupling constant α\alpha. We argue that most of the properties of the configurations are not affected by the higher derivative terms. For fixed α\alpha the set of black hole solutions terminates at an extremal black hole with a regular horizon, where the Hawking temperature vanishes and the angular momenta attain their extremal values. The domain of existence of regular black hole solutions is studied. The near horizon geometry of the extremal solutions is determined by employing the entropy function formalism.Comment: 25 pages, 7 figure
    • 

    corecore