3,002 research outputs found

    Unified Models of Molecular Emission from Class 0 Protostellar Outflow Sources

    Full text link
    Low mass star-forming regions are more complex than the simple spherically symmetric approximation that is often assumed. We apply a more realistic infall/outflow physical model to molecular/continuum observations of three late Class 0 protostellar sources with the aims of (a) proving the applicability of a single physical model for all three sources, and (b) deriving physical parameters for the molecular gas component in each of the sources. We have observed several molecular species in multiple rotational transitions. The observed line profiles were modelled in the context of a dynamical model which incorporates infall and bipolar outflows, using a three dimensional radiative transfer code. This results in constraints on the physical parameters and chemical abundances in each source. Self-consistent fits to each source are obtained. We constrain the characteristics of the molecular gas in the envelopes as well as in the molecular outflows. We find that the molecular gas abundances in the infalling envelope are reduced, presumably due to freeze-out, whilst the abundances in the molecular outflows are enhanced, presumably due to dynamical activity. Despite the fact that the line profiles show significant source-to-source variation, which primarily derives from variations in the outflow viewing angle, the physical parameters of the gas are found to be similar in each core.Comment: MNRAS 12 pages, 16 figure

    The preferentially magnified active nucleus in IRAS F10214+4724 - II. Spatially resolved cold molecular gas

    Full text link
    We present JVLA observations of the cold (CO (1-0)) molecular gas in IRAS F10214+4724, a lensed ULIRG at z=2.3 with an obscured active nucleus. The galaxy is spatially and spectrally well-resolved in the CO (1-0) emission line. A CO (1-0) counter-image is detected at the 3-sigma level. Five of the 42 km/s channels (with >5-sigma detections) are mapped back into the source plane and their total magnification posterior PDFs sampled. This reveals a roughly linear arrangement, tentatively a rotating disk. We derive a molecular gas mass of M_gas = 1.2 +- 0.2 x 10^10 M_sun, assuming a ULIRG L_{CO}-to-M_{gas} conversion ratio of \alpha = 0.8 M_sun / (K km/s pc^2) that agrees well with the derived range of \alpha = 0.3 - 1.3 for separate dynamical mass estimates at assumed inclinations of i = 90 - 30 degrees. Based on the AGN and CO (1-0) peak emission positions and the lens model, we predict a distortion of the CO Spectral Line Energy Distribution (SLED) where higher order J lines that may be partially excited by AGN heating will be preferentially lensed owing to their smaller solid angles and closer proximity to the AGN and therefore the cusp of the caustic. Comparison with other lensing inversion results shows that the narrow line region and AGN radio core in IRAS F10214+4724 are preferentially lensed by a factor >~ 3 and 11 respectively, relative to the molecular gas emission. This distorts the global continuum emission Spectral Energy Distribution (SED) and suggests caution in unsophisticated uses of IRAS F10214+4724 as an archetype high-redshift ULIRG. We explore two Large Velocity Gradient (LVG) models, incorporating spatial CO (1-0) and (3-2) information and present tentative evidence for an extended, low excitation cold gas component that implies that the total molecular gas mass in IRAS F10214+4724 is a factor >~2 greater than that calculated using spatially unresolved CO observations.Comment: Dedicated to Steve Rawlings. Accepted for publication in MNRAS. 16 pages, 11 figure

    Champagne Flutes and Brandy Snifters: Modelling Protostellar Outflow-Cloud Chemical Interfaces

    Full text link
    A rich variety of molecular species has now been observed towards hot cores in star forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled "brandy snifter" shaped outflows over narrower "champagne flute" shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+^+. We present results from a chemo-dynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.Comment: Accepted to MNRAS. 12 pages, 8 Figure

    Rotation of the pre-stellar core L1689B

    Full text link
    The search for the onset of star formation in pre-stellar cores has focussed on the identification of an infall signature in the molecular line profiles of tracer species. The classic infall signature is a double peaked line profile with an asymmetry in the strength of the peaks such that the blue peak is stronger. L1689B is a pre-stellar core and infall candidate but new JCMT HCO+ line profile data, presented here, confirms that both blue and red asymmetric line profiles are present in this source. Moreover, a dividing line can be drawn between the locations where each type of profile is found. It is argued that it is unlikely that the line profiles can be interpreted with simple models of infall or outflow and that rotation of the inner regions is the most likely explanation. A rotational model is developed in detail with a new 3D molecular line transport code and it is found that the best type of model is one in which the rotational velocity profile is in between solid body and Keplerian. It is firstly shown that red and blue asymmetric line profiles can be generated with a rotation model entirely in the absence of any infall motion. The model is then quantitively compared with the JCMT data and an iteration over a range of parameters is performed to minmize the difference between the data and model. The results indicate that rotation can dominate the line profile shape even before the onset of infall.Comment: Accepted by MNRAS, 7 pages, 4 figure

    Glass Transition Phenomena Semiannual Status Report

    Get PDF
    Multiple glass transitions, heat capacities, and equation of state properties of polymer system

    CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483

    Full text link
    CO isotopes are able to probe the different components in protostellar clouds. These components, core, envelope and outflow have distinct physical conditions and sometimes more than one component contributes to the observed line profile. In this study we determine how CO isotope abundances are altered by the physical conditions in the different components. We use a 3D molecular line transport code to simulate the emission of four CO isotopomers, 12CO J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483, which contains a cold quiescent core, an infalling envelope and a clear outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line observations with the inclusion of freeze-out, a density profile and infall. Our model profiles of 12CO and 13CO have a large linewidth due to a high velocity jet. These profiles replicate the process of more abundant material being susceptible to a jet. C18O and C17O do not display such a large linewidth as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table

    Molecular gas freeze-out in the pre-stellar core L1689B

    Full text link
    C17O (J=2-1) observations have been carried out towards the pre-stellar core L1689B. By comparing the relative strengths of the hyperfine components of this line, the emission is shown to be optically thin. This allows accurate CO column densities to be determined and, for reference, this calculation is described in detail. The hydrogen column densities that these measurements imply are substantially smaller than those calculated from SCUBA dust emission data. Furthermore, the C17O column densities are approximately constant across L1689B whereas the SCUBA column densities are peaked towards the centre. The most likely explanation is that CO is depleted from the central regions of L1689B. Simple models of pre-stellar cores with an inner depleted region are compared with the results. This enables the magnitude of the CO depletion to be quantified and also allows the spatial extent of the freeze-out to be firmly established. We estimate that within about 5000 AU of the centre of L1689B, over 90% of the CO has frozen onto grains. This level of depletion can only be achieved after a duration that is at least comparable to the free-fall timescale.Comment: MNRAS letters. 5 pages, 5 figure
    corecore