155 research outputs found
Comparative analyses among interfaces of some ceramic materials and bone in sheep
Aim of this work is the evaluation of “in situ” implants in an animal model to study the interfaces that some ceramic materials for dental bone defects develop with bone and to check which material is more osteoconductive.In a sheep’s jaw, eight holes were drilled and filled with six ceramic materials in granular shape. Two bilateral holes were left empty as reference. The ceramic materials were: porous tricalcium phosphate (TCP), porous hydroxylapatite (HA) and four bioactive glasses. The glasses differ for doping agents that affect the velocity of biodegradation in the living body.Monthly radiographs were taken and the X-ray pictures analyzed by means of a Video Display Computer in order to quantify the optical density changes occured in the holes. After 4 month implantation, the segments of the jaw containing the materials were fixed in paraformaldehyde, embedded in methylmethacrylate and sectioned.The results obtained under the microradiograph, the SEM and the X-ray microprobe showed a good bone repair only with TCP granules. A great degradation was seen in HA granules and particularly in glasses.The degradation modified the structure and the composition of the glass granules, but it was not followed by a consequent bone deposition.Des granules de Phosphate TriCalcique, de Hydroxyapatite et de trois céramiques bioactifs (A, AKRA 15 et 18) ont été implantés pendant 4 mois dans des cavités produites dans la mandibule d’un mouton, dans le but d’en évaluer les capacités ostéoréparatrices. Les études en microradiographie, au MEB et à la microsonde à rayons X des coupes de la mandibule, incluse dans le méthacrylate, mettent en évidence que seulement le PTC produit une réparation satisfaisante, tandis que les autres matériaux n’induisent pas une néoformation osseuse au niveau des lésions expérimentales
automotive turbochargers power estimation based on speed fluctuation analysis
Turbocharging technology will play a crucial role in the near future as a way to meet the requirements for pollutant emissions and fuel consumption reduction. However, optimal turbocharger control is still an issue, especially for downsized engines fitted with a low number of cylinders. As a matter of fact, automotive turbochargers are characterized by wide operating range and unsteady gas flow through the turbine, while only steady flow maps are usually provided by the manufacturer. In addition, in passenger cars applications, real-time turbocharger optimal control is even more difficult because of the lack of information about pressure/temperature in turbine upstream/downstream circuits and turbocharger rotational speed. In order to overcome these unknowns, this work presents a methodology for instantaneous turbocharger rotational speed determination through a proper processing of the signal coming from one accelerometer mounted on the compressor diffuser, or one microphone facing the compressor. The presented approach can be used to evaluate both turbocharger speed mean value and the amplitude of turbocharger speed fluctuations caused by the pulsating gas flow in turbine upstream and downstream circuits. Once turbocharger speed has been determined, it can be used to estimate power delivered by the turbine. The whole estimation algorithm has been developed and validated for a light duty turbocharged Common-Rail Diesel engine mounted in a test cell. However, the developed methodology is general and can be applied to different turbochargers, both for Spark Ignited and Diesel applications. © 2015 Published by Elsevier Ltd
Accelerometer-based SOC estimation methodology for combustion control applied to Gasoline Compression Ignition
The European Community's recent decision to suspend the marketing of cars with conventional fossil-fueled internal combustion engines from 2035 requires new solutions, based on carbon-neutral technologies, that ensure equivalent performances in terms of reliability, trip autonomy, refueling times and end-of-life disposal of components compared to those of current gasoline or diesel cars. The use of bio-fuels and hydrogen, which can be
obtained by renewable energy sources, coupled with high-efficiency combustion methodologies might allow to reach the carbon neutrality of transports (net-zero carbon dioxide emissions) even using the well-known internal combustion engine technology. Bearing this in mind, experiments were carried out on compression ignited engines running on gasoline (GCI) with a high thermal efficiency which, in the future, could be easily adapted to run on a
bio-fuel. Despite the well-reported benefits of GCI engines in terms of efficiency and pollutant emissions, combustion instability hinders the diffusion of these engines for industrial applications. A possible solution to stabilize GCI combustion is the use of multiple injections strategies, typically composed by 2 early injected fuel jests followed by the main injection. The heat released by the combustion of the earlier fuel jets allows to reduce the ignition delay of the main injection, directly affecting both delivered torque and center of combustion. As a result,
to properly manage GCI engines, a stable and reliable combustion of the pre-injections is mandatory. In this paper, an estimation methodology of the start of combustion (SOC) position, based on the analysis of the signal coming from an accelerometer sensor mounted on the engine block, is presented (the optimal sensor positioning is also discussed). A strong correlation between the SOC calculated from the accelerometer and that obtained from the
analysis of the rate of heat release (RoHR) was identified. As a result, the estimated SOC could be used to feedback an adaptive closed-loop combustion control algorithm, suitable to improve the stability of the whole combustion process
Contrasting the beam interaction characteristics of selected lasers with a partially stabilised zirconia (PSZ) bio-ceramic
Differences in the beam interaction characteristics of a CO2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilised zirconia (PSZ) bio-ceramic have been studied. A derivative of Beer-Lambert’s law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55 x 10-3 cm for the CO2 laser, 18.22 x 10-3 cm for the Nd:YAG laser, 17.17 x 10-3 cm for the HPDL and 8.41 x 10-6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J/cm2, 97 J/cm2, 115 J/cm2 and 0.48 J/cm2 respectively. The thermal loading value for the CO2 laser, the Nd:YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ/cm3, 5.32 kJ/cm3, 6.69 kJ/cm3 and 57.04 kJ/cm3 respectively
automatic calibration of control parameters based on merit function spectral analysis
Abstract The number of actuations influencing the combustion is increasing, and, as a consequence, the calibration of control parameters is becoming challenging. One of the most effective factors influencing performance and efficiency is the combustion phasing: for gasoline engines control variables such as Spark Advance (SA), Air-to-Fuel Ratio (AFR), Variable Valve Timing (VVT), Exhaust Gas Recirculation (EGR) are mostly used to set the combustion phasing. The optimal control setting can be chosen according to a cost function, taking into account performance indicators, such as Indicated Mean Effective Pressure (IMEP), Brake Specific Fuel Consumption (BSFC), pollutant emissions, or other indexes inherent to reliability issues, such as exhaust gas temperature, or knock intensity. The paper proposes the use of the extremum seeking approach during the calibration process. The main idea consists in changing the values of each control parameter at the same time, identifying its effect on the monitored cost function, allowing to shift automatically the control setting towards the optimum solution throughout the calibration procedure. Obviously, the nodal point is to establish how the various control parameters affect the monitored cost function and to determine the direction of the required variation, in order to approach the optimum. This task is carried out by means of a spectral analysis of the cost function: each control variable is varied according to a sine wave, thus its effect on the cost function can be determined by evaluating the amplitude of the Fast Fourier Transform (FFT) of the cost function, for the given excitation frequency. The FFT amplitude is representative of the cost function sensitivity to the control variable variations, while the phase can be used to assess the direction of the variation that must be applied to the control settings in order to approach the optimum configuration. Each control parameter is excited with a different frequency, thus it is possible to recognize the effect of a single parameter by analyzing the spectrum of the cost function for the given excitation frequency. The methodology has been applied to data referring to a PFI engine, trying to maximize IMEP, while limiting the knock intensity and exhaust gas temperature, using SA and AFR as control variables. The approach proved to be efficient in reaching the optimum control setting, showing that the optimal setting can be achieved rapidly and consistently
Experimental Characterization of Hydrocarbons and Nitrogen Oxides Production in a Heavy-Duty Diesel–Natural Gas Reactivity-Controlled Compression Ignition Engine
Reactivity-Controlled Compression Ignition (RCCI) combustion is considered one of the most promising Low-Temperature Combustion (LTC) concepts aimed at reducing greenhouse gases for the transportation and power generation sectors. Due to the spontaneous combustion of a lean, nearly homogeneous mixture of air and low-reactivity fuel (LRF), ignited through the direct injection of a small quantity of high-reactivity fuel (HRF), RCCI (dual-fuel) shows higher efficiency and lower pollutants compared to conventional diesel combustion (CDC) if run at very advanced injection timing. Even though a HRF is used, the use of advanced injection timing leads to high ignition delays, compared to CDC, and generates high cycle-to-cycle variability, limited operating range, and high pressure rise rates at high loads. This work presents an experimental analysis performed on a heavy-duty single-cylinder compression ignited engine in dual-fuel diesel-natural gas mode. The objective of the present work is to investigate and highlight the correlations between combustion behavior and pollutant emissions, especially unburned hydrocarbons (HC) and oxides of nitrogen (NOx). Based on the analysis of crank-resolved pollutants measurements performed through fast FID and fast NOx systems under different engine operating conditions, two correlations were found demonstrating a good accordance between pollutant production and combustion behavior: Net Cyclic Hydrocarbon emission-cyclic IMEP variations (R-2 = 0.86), and Cyclic NOx-maximum value of the Rate of Heat Released (R-2 = 0.82)
Ecological impacts of invading seaweeds: A meta-analysis of their effects at different trophic levels
Aim
Biological invasions are among the main threats to biodiversity. To promote a mechanistic understanding of the ecological impacts of non-native seaweeds, we assessed how effects on resident organisms vary according to their trophic level.
Location
Global.
Methods
We performed meta-analytical comparisons of the effects of non-native seaweeds on both individual species and communities. We compared the results of analyses performed on the whole dataset with those obtained from experimental data only and, when possible, between rocky and soft bottoms.
Results
Meta-analyses of data from 100 papers revealed consistent negative effects of non-native seaweeds across variables describing resident primary producer communities. In contrast, negative effects of seaweeds on consumers emerged only on their biomass and, limited to rocky bottoms, diversity. At the species level, negative effects were consistent across primary producers' response variables, while only the survival of consumers other than herbivores or predators (e.g. deposit/suspension feeders or detritivores) decreased due to invasion. Excluding mensurative data, negative effects of seaweeds persisted only on resident macroalgal communities and consumer species survival, while switched to positive on the diversity of rocky-bottom consumers. However, negative effects emerged for biomass and, in rocky habitats, density of consumers other than herbivores or predators.
Main conclusions
Our results support the hypothesis that seaweeds' effects on resident biodiversity are generally more negative within the same trophic level than on higher trophic guilds. Finer trophic grouping of resident organisms revealed more complex impacts than previously detected. High heterogeneity in the responses of some consumer guilds suggests that impacts of non-native seaweeds at higher trophic levels may be more invader- and species-specific than competitive effects at the same trophic level. Features of invaded habitats may further increase variability in seaweeds' impacts. More experimental data on consumers' response to invasion are needed to disentangle the effects of non-native seaweeds from those of other environmental stressors
Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing
<p>Abstract</p> <p>Background</p> <p>The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences.</p> <p>Results</p> <p>Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite <it>de novo </it>transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled <it>de novo </it>from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including <it>extracellular matrix</it>, <it>cartilage development</it>, <it>contractile fiber</it>, and <it>chemokine activity</it>.</p> <p>Conclusions</p> <p>Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.</p
Bone turnover markers in sheep and goat: a review of the scientific literature
Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the
Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq), Brazil, for his PhD
scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio
Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas
Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by
calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal inverte�brates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (debor�ealization, 18%). Tropicalization dominated Atlantic sites compared to semi�enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi�enclosed basins appeared to be particularly vulnerable to ocean warming,
experiencing the fastest rates of warming and biodiversity loss through deborealization
- …