134 research outputs found

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Precision measurement of the B0 meson lifetime using B0 → J/ψ K∗0 decays with the ATLAS detector

    Get PDF
    Abstract A measurement of the B0B^{0} B 0 meson lifetime using B0J/ψK0 B^{0} \rightarrow J/\psi K^{*0} B 0 → J / ψ K ∗ 0 decays in data from 13  TeV\text {TeV} TeV proton–proton collisions with an integrated luminosity of 140 fb1 140~\mathrm {fb^{-1}} 140 fb - 1 recorded by the ATLAS detector at the LHC is presented. The measured effective lifetime is τ=1.5053±0.0012 (stat.)±0.0035 (syst.) ps. \tau = 1.5053\pm 0.0012~\mathrm {(stat.)} \pm 0.0035~\mathrm {(syst.)~ps}. τ = 1.5053 ± 0.0012 ( stat . ) ± 0.0035 ( syst . ) ps . The average decay width extracted from the effective lifetime, using parameters from external sources, is Γd=0.6639±0.0005 (stat.)±0.0016 (syst.)±0.0038 (ext.) ps1,\begin{aligned} \Gamma _d = 0.6639\pm 0.0005~\mathrm {(stat.)} \pm 0.0016~\mathrm {(syst.)}\\ \pm 0.0038~\text {(ext.)} \text {~ps}^{-1}, \end{aligned} Γ d = 0.6639 ± 0.0005 ( stat . ) ± 0.0016 ( syst . ) ± 0.0038 (ext.) ps - 1 , where the uncertainties are statistical, systematic and from external sources. The earlier ATLAS measurement of Γs\Gamma _s Γ s in the Bs0J/ψϕB^{0}_{s} \rightarrow J/\psi \phi B s 0 → J / ψ ϕ decay was used to derive a value for the ratio of the average decay widths Γd\Gamma _d Γ d and Γs\Gamma _s Γ s for B0B^{0} B 0 and Bs0B^{0}_{s} B s 0 mesons respectively, of ΓdΓs=0.9905±0.0022 (stat.)±0.0036 (syst.)±0.0057 (ext.). \frac{\Gamma _d }{\Gamma _s } = 0.9905\pm 0.0022~\text {(stat.)} \pm 0.0036~\text {(syst.)} \pm 0.0057~\text {(ext.)}. Γ d Γ s = 0.9905 ± 0.0022 (stat.) ± 0.0036 (syst.) ± 0.0057 (ext.) . The measured lifetime, average decay width and decay width ratio are in agreement with theoretical predictions and with measurements by other experiments. This measurement provides the most precise result of the effective lifetime of the B0B^{0} B 0 meson to date. </jats:p

    Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with charged leptons and jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy right-handed Majorana or Dirac neutrinos NR and heavy right-handed gauge bosons WR is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (“resolved” channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (“boosted” channel). The events are selected from pp collision data at the LHC with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at √s = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy righthanded WR boson and NR plane. The excluded region extends to about m(WR) = 6.4 TeV for both Majorana and Dirac NR neutrinos at m(NR) < 1 TeV. NR with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at m(WR) = 4.8 TeV for the Majorana neutrinos, and limits of m(NR) up to 3.6 TeV for m(WR) = 5.2 (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered

    Search for charged Higgs bosons produced in top-quark decays or in association with top quarks and decaying via H±→τ±ντ in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Charged Higgs bosons produced either in top-quark decays or in association with a top quark, subsequently decaying via H±→τ±ντ, are searched for in 140  fb−1 of proton-proton collision data at s=13  TeV recorded with the ATLAS detector. Depending on whether the top quark is produced together with the H± decays hadronically or semileptonically, the search targets τ+jets or τ+lepton final states, in both cases with a τ-lepton decaying into a neutrino and hadrons. No significant excess over the Standard Model background expectation is observed. For the mass range of 80≤mH±≤3000  GeV, upper limits at 95% confidence level are set on the production cross section of the charged Higgs boson times the branching fraction B(H±→τ±ντ) in the range 4.5 pb–0.4 fb. In the mass range 80–160 GeV, assuming the Standard Model cross section for tt¯ production, this corresponds to upper limits between 0.27% and 0.02% on B(t→bH±)×B(H±→τ±ντ).</jats:p

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    The performance of missing transverse momentum reconstruction and its significance with the ATLAS detector using 140 fb-1 of √s = 13 TeV TeV pp collisions

    Get PDF
    Abstract This paper presents the reconstruction of missing transverse momentum ( pTmissp_{\text {T}}^{\text {miss}} p T miss ) in proton–proton collisions, at a center-of-mass energy of 13 TeV. This is a challenging task involving many detector inputs, combining fully calibrated electrons, muons, photons, hadronically decaying τ\tau τ -leptons, hadronic jets, and soft activity from remaining tracks. Possible double counting of momentum is avoided by applying a signal ambiguity resolution procedure which rejects detector inputs that have already been used. Several pTmissp_{\text {T}}^{\text {miss}} p T miss ‘working points’ are defined with varying stringency of selections, the tightest improving the resolution at high pile-up by up to 39% compared to the loosest. The pTmissp_{\text {T}}^{\text {miss}} p T miss performance is evaluated using data and Monte Carlo simulation, with an emphasis on understanding the impact of pile-up, primarily using events consistent with leptonic Z decays. The studies use 140 fb1140~\text {fb}^{-1} 140 fb - 1 of data, collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. The results demonstrate that pTmissp_{\text {T}}^{\text {miss}} p T miss reconstruction, and its associated significance, are well understood and reliably modelled by simulation. Finally, the systematic uncertainties on the soft pTmissp_{\text {T}}^{\text {miss}} p T miss component are calculated. After various improvements the scale and resolution uncertainties are reduced by up to 76%76\% 76 % and 51%51\% 51 % , respectively, compared to the previous calculation at a lower luminosity

    Reconstruction and identification of pairs of collimated τ-leptons decaying hadronically using sqrt{s}=13 TeV pp collision data with the ATLAS detector

    Get PDF
    This paper describes an algorithm for reconstructing and identifying a highly collimated hadronically decaying τ -lepton pair with low transverse momentum. When two τ -leptons are highly collimated, their visible decay products might overlap, degrading the reconstruction performance for each of the τ -leptons. A dedicated treatment attempting to tag the τ -lepton pair as a single object is required. The reconstruction algorithm is based on a large radius jet and its associated two leading subjets, and the identification uses a boosted decision tree to discriminate between signatures from τ +τ − systems and those arising from QCD jets. The efficiency of the identification algorithm is measured in Zγ events using proton–proton collision data at √s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb−1. The resulting data-to-simulation scale factors are close to unity with uncertainties ranging from 26 to 37%

    Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets using 139 fb−1 of proton-proton collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    corecore