1,002 research outputs found

    Nuclear structure and reaction studies at SPIRAL

    Get PDF
    The SPIRAL facility at GANIL, operational since 2001, is described briefly. The diverse physics program using the re-accelerated (1.2 to 25 MeV/u) beams ranging from He to Kr and the instrumentation specially developed for their exploitation are presented. Results of these studies, using both direct and compound processes, addressing various questions related to the existence of exotic states of nuclear matter, evolution of new "magic numbers", tunnelling of exotic nuclei, neutron correlations, exotic pathways in astrophysical sites and characterization of the continuum are discussed. The future prospects for the facility and the path towards SPIRAL2, a next generation ISOL facility, are also briefly presented.Comment: 48 pages, 27 figures. Accepted for publication in Journal of Physics

    Killing the umpire: cooperative defects in mitotic checkpoint and BRCA2 genes on the road to transformation

    Get PDF
    Recent findings from mouse models of BRCA2 genetic lesions have provided intriguing insights and important questions concerning modes of tumor development in familial breast and ovarian cancers. Fibroblasts from mice homozygous for the BRCA2(Tr) allele grow poorly and display an array of chromosomal abnormalities that are consistent with a role for BRCA2 in DNA repair. This growth defect can be overcome and cellular transformation promoted by the expression of defective, dominant negative alleles of p53 and of the mitotic checkpoint gene Bub1, both of which are known to induce chromosome instability. These findings are mirrored in the genetic lesions sustained in tumors found in the rare BRCA2(Tr/Tr)mice that survive to adulthood, which include defects in p53 as well as the mitotic checkpoint proteins Bub1 and Mad3L. Together, these data hint that tumors in these mice evolve from an unusually intense selective pressure to remove DNA damage checkpoints, which in turn might be facilitated by chromosomal abolition of mitotic checkpoints and the consequent increase in shuffling of genetic information. How these genetic lesions co-operate to yield transformed cells and how these data relate to BRCA1 and BRCA2 defects in the human population are important questions raised by this work

    The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition.

    Get PDF
    Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances

    Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study.

    Get PDF
    BACKGROUND: Genome-wide association studies have identified >30 common SNPs associated with epithelial ovarian cancer (EOC). We evaluated the combined effects of EOC susceptibility SNPs on predicting EOC risk in an independent prospective cohort study. METHODS: We genotyped ovarian cancer susceptibility single nucleotide polymorphisms (SNPs) in a nested case-control study (750 cases and 1428 controls) from the UK Collaborative Trial of Ovarian Cancer Screening trial. Polygenic risk scores (PRSs) were constructed and their associations with EOC risk were evaluated using logistic regression. The absolute risk of developing ovarian cancer by PRS percentiles was calculated. RESULTS: The association between serous PRS and serous EOC (OR 1.43, 95% CI 1.29 to 1.58, p=1.3×10-11) was stronger than the association between overall PRS and overall EOC risk (OR 1.32, 95% CI 1.21 to 1.45, p=5.4×10-10). Women in the top fifth percentile of the PRS had a 3.4-fold increased EOC risk compared with women in the bottom 5% of the PRS, with the absolute EOC risk by age 80 being 2.9% and 0.9%, respectively, for the two groups of women in the population. CONCLUSION: PRSs can be used to predict future risk of developing ovarian cancer for women in the general population. Incorporation of PRSs into risk prediction models for EOC could inform clinical decision-making and health management

    Cell cycle genes and ovarian cancer susceptibility: a tagSNP analysis

    Get PDF
    BACKGROUND: Dysregulation of the cell cycle is a hallmark of many cancers including ovarian cancer, a leading cause of gynaecologic cancer mortality worldwide.METHODS: We examined single nucleotide polymorphisms (SNPs) (n = 288) from 39 cell cycle regulation genes, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors, in a two-stage study. White, non-Hispanic cases (n = 829) and ovarian cancer-free controls (n = 941) were genotyped using an Illumina assay.RESULTS: Eleven variants in nine genes (ABL1, CCNB2, CDKN1A, CCND3, E2F2, CDK2, E2F3, CDC2, and CDK7) were associated with risk of ovarian cancer in at least one genetic model. Seven SNPs were then assessed in four additional studies with 1689 cases and 3398 controls. Association between risk of ovarian cancer and ABL1 rs2855192 found in the original population [odds ratio, ORBB vs AA 2.81 (1.29-6.09), P = 0.01] was also observed in a replication population, and the association remained suggestive in the combined analysis [ORBB vs AA 1.59 (1.08-2.34), P = 0.02]. No other SNP associations remained suggestive in the replication populations.CONCLUSION: ABL1 has been implicated in multiple processes including cell division, cell adhesion and cellular stress response. These results suggest that characterization of the function of genetic variation in this gene in other ovarian cancer populations is warranted. British Journal of Cancer (2009) 101, 1461-1468. doi: 10.1038/sj.bjc.6605284 www.bjcancer.com Published online 8 September 2009 (C) 2009 Cancer Research U

    Tagging single-nucleotide polymorphisms in candidate oncogenes and susceptibility to ovarian cancer

    Get PDF
    Low–moderate risk alleles that are relatively common in the population may explain a significant proportion of the excess familial risk of ovarian cancer (OC) not attributed to highly penetrant genes. In this study, we evaluated the risks of OC associated with common germline variants in five oncogenes (BRAF, ERBB2, KRAS, NMI and PIK3CA) known to be involved in OC development. Thirty-four tagging SNPs in these genes were genotyped in ∼1800 invasive OC cases and 3000 controls from population-based studies in Denmark, the United Kingdom and the United States. We found no evidence of disease association for SNPs in BRAF, KRAS, ERBB2 and PIK3CA when OC was considered as a single disease phenotype; but after stratification by histological subtype, we found borderline evidence of association for SNPs in KRAS and BRAF with mucinous OC and in ERBB2 and PIK3CA with endometrioid OC. For NMI, we identified a SNP (rs11683487) that was associated with a decreased risk of OC (unadjusted Pdominant=0.004). We then genotyped rs11683487 in another 1097 cases and 1792 controls from an additional three case–control studies from the United States. The combined odds ratio was 0.89 (95% confidence interval (CI): 0.80–0.99) and remained statistically significant (Pdominant=0.032). We also identified two haplotypes in ERBB2 associated with an increased OC risk (Pglobal=0.034) and a haplotype in BRAF that had a protective effect (Pglobal=0.005). In conclusion, these data provide borderline evidence of association for common allelic variation in the NMI with risk of epithelial OC
    corecore