33,572 research outputs found
Medium-modified evolution of multiparticle production in jets in heavy-ion collisions
The energy evolution of medium-modified average multiplicities and
multiplicity fluctuations in quark and gluon jets produced in heavy-ion
collisions is investigated from a toy QCD-inspired model. In this model, we use
modified splitting functions accounting for medium-enhanced radiation of gluons
by a fast parton which propagates through the quark gluon plasma. The leading
contribution of the standard production of soft hadrons is found to be enhanced
by the factor while next-to-leading order (NLO) corrections are
suppressed by , where the nuclear parameter accounts for
the induced-soft gluons in the hot medium. The role of next-to-next-to-leading
order corrections (NNLO) is studied and the large amount of medium-induced soft
gluons is found to drastically affect the convergence of the perturbative
series. Our results for such global observables are cross-checked and compared
with their limits in the vacuum and a new method for solving the second
multiplicity correlator evolution equations is proposed.Comment: 21 pages and 8 figures, typo corrections, references adde
Generalized enthalpy model of a high pressure shift freezing process
High-pressure freezing processes are a novel emerging technology in food processing, offering significant improvements to the quality of frozen foods. To be able to simulate plateau times and thermal history under different conditions, in this work we present a generalized enthalpy model of the high-pressure shift freezing process. The model includes the effects of pressure on conservation of enthalpy and incorporates the freezing point depression of non-dilute food samples. In addition the significant heat transfer effects of convection in the pressurizing medium are accounted for by solving the two-dimensional Navier-Stokes equations. We run the model for several numerical tests where the food sample is agar gel, and find good agreement with experimental data from the literature
Dynamics of Interacting Scalar Fields in Expanding Space-Time
The effective equation of motion is derived for a scalar field interacting
with other fields in a Friedman-Robertson-Walker background space-time. The
dissipative behavior reflected in this effective evolution equation is studied
both in simplified approximations as well as numerically. The relevance of our
results to inflation are considered both in terms of the evolution of the
inflaton field as well as its fluctuation spectrum. A brief examination also is
made of supersymmetric models that yield dissipative effects during inflation.Comment: 36 pages, 12 figures. Version published in the Physical Review
Brain-machine interfaces for rehabilitation in stroke: A review
BACKGROUND: Motor paralysis after stroke has devastating consequences for the patients, families and caregivers. Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paralysis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can be applied to patients with no residual movement. OBJECTIVE: This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after stroke. METHODS: We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as the future perspectives of neural-machine interfaces. RESULTS: Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted, demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive technologies such as the electroencephalogram (EEG). CONCLUSIONS: Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the next generation of stroke rehabilitation therapies.This study was funded by the Bundesministerium für Bildung und Forschung BMBF MOTORBIC (FKZ13GW0053)andAMORSA(FKZ16SV7754), the Deutsche Forschungsgemeinschaft (DFG), the fortüne-Program of the University of Tübingen (2422-0-0 and 2452-0-0), and the Basque GovernmentScienceProgram(EXOTEK:KK2016/00083). NIL was supported by the Basque Government’s scholarship for predoctoral students
BEC-BCS crossover in a cold and magnetized two color NJL model
The BEC-BCS crossover for a NJL model with diquark interactions is studied in
the presence of an external magnetic field. Particular attention is paid to
different regularization schemes used in the literature. A thorough comparison
of results is performed for the case of a cold and magnetized two-color NJL
model. According to our results, the critical chemical potential for the BEC
transition exhibits a clear inverse magnetic catalysis effect for magnetic
fields in the range . As for the BEC-BCS
crossover, the corresponding critical chemical potential is very weakly
sensitive to magnetic fields up to , showing a much smaller
inverse magnetic catalysis as compared to the BEC transition, and displays a
strong magnetic catalysis from this point on.Comment: 15 pages, 8 figures; v2 PRD versio
An intrinsic state for an extended version of the interacting boson model
An intrinsic-state formalism for IBM-4 is presented. A basis of deformed
bosons is introduced which allows the construction of a general trial wave
function which has Wigner's spin-isospin SU(4) symmetry as a particular limit.
Intrinsic-state calculations are compared with exact ones showing good
agreement.Comment: 12 pages, TeX (ReVTeX). Content changed. Accepted in Phys. Rev.
Spin-orbit induced mixed-spin ground state in NiO perovskites probed by XAS: new insight into the metal to insulator transition
We report on a Ni L edges x-ray absorption spectroscopy (XAS) study
in NiO perovskites. These compounds exhibit a metal to insulator ()
transition as temperature decreases. The L edge presents a clear
splitting in the insulating state, associated to a less hybridized ground
state. Using charge transfer multiplet calculations, we establish the
importance of the crystal field and 3d spin-orbit coupling to create a
mixed-spin ground state. We explain the transition in NiO
perovskites in terms of modifications in the Ni crystal field splitting
that induces a spin transition from an essentially low-spin (LS) to a
mixed-spin state.Comment: 4 pages, 4 figures, accepted as PRB - Rapid Comm. Dez. 200
- …
