24,354 research outputs found

    Towards a new determination of the QCD Lambda parameter from running couplings in the three-flavour theory

    Full text link
    We review our new strategy and current status towards a high precision computation of the Lambda parameter from three-flavour simulations in QCD. To reach this goal we combine specific advantages of the Schr\"odinger functional and gradient flow couplings.Comment: 7 pages, 3 figures; Proceedings of the 32nd International Symposium on Lattice Field Theory; 23-28 June, 2014, Columbia University, New Yor

    Kinetic Ising System in an Oscillating External Field: Stochastic Resonance and Residence-Time Distributions

    Full text link
    Experimental, analytical, and numerical results suggest that the mechanism by which a uniaxial single-domain ferromagnet switches after sudden field reversal depends on the field magnitude and the system size. Here we report new results on how these distinct decay mechanisms influence hysteresis in a two-dimensional nearest-neighbor kinetic Ising model. We present theoretical predictions supported by numerical simulations for the frequency dependence of the probability distributions for the hysteresis-loop area and the period-averaged magnetization, and for the residence-time distributions. The latter suggest evidence of stochastic resonance for small systems in moderately weak oscillating fields.Comment: Includes updated results for Fig.2 and minor text revisions to the abstract and text for clarit

    The Λ\Lambda-parameter in 3-flavour QCD and αs(mZ)\alpha_s(m_Z) by the ALPHA collaboration

    Full text link
    We present results by the ALPHA collaboration for the Λ\Lambda-parameter in 3-flavour QCD and the strong coupling constant at the electroweak scale, αs(mZ)\alpha_s(m_Z), in terms of hadronic quantities computed on the CLS gauge configurations. The first part of this proceedings contribution contains a review of published material \cite{Brida:2016flw,DallaBrida:2016kgh} and yields the Λ\Lambda-parameter in units of a low energy scale, 1/Lhad1/L_{\rm had}. We then discuss how to determine this scale in physical units from experimental data for the pion and kaon decay constants. We obtain ΛMS‾(3)=332(14)\Lambda_{\overline{\rm MS}}^{(3)} = 332(14) MeV which translates to αs(MZ)=0.1179(10)(2)\alpha_s(M_Z)=0.1179(10)(2) using perturbation theory to match between 3-, 4- and 5-flavour QCD.Comment: 21 pages. Collects contributions of A. Ramos, S. Sint and R. Sommer to the 34th annual International Symposium on Lattice Field Theory; LaTeX input encoding problem fixe

    K- absorption in nuclei by two and three nucleons

    Full text link
    It will be shown that the peaks in the (Lambda p) and (Lambda d) invariant mass distributions, observed in recent FINUDA experiments and claimed to be signals of deeply bound kaonic states, are naturally explained in terms of K- absorption by two or three nucleons leaving the rest of the original nuclei as spectator. For reactions on heavy nuclei, the subsequent interactions of the particles produced in the primary absorption process with the residual nucleus play an important role. Our analyses leads to the conclusion that at present there is no experimental evidence of deeply bound K- state in nuclei. Although the FINUDA experiments have been done for reasons which are not supported a posteriori, some new physics can be extracted from the data.Comment: 6 pages, 5 figures. Talk presented at the International Conference on Exotic Atoms "EXA 2008", Vienna, Austria, September 15-18, 200

    Correlations in Hot Asymmetric Nuclear Matter

    Get PDF
    The single-particle spectral functions in asymmetric nuclear matter are computed using the ladder approximation within the theory of finite temperature Green's functions. The internal energy and the momentum distributions of protons and neutrons are studied as a function of the density and the asymmetry of the system. The proton states are more strongly depleted when the asymmetry increases while the occupation of the neutron states is enhanced as compared to the symmetric case. The self-consistent Green's function approach leads to slightly smaller energies as compared to the Brueckner Hartree Fock approach. This effect increases with density and thereby modifies the saturation density and leads to smaller symmetry energies.Comment: 7 pages, 7 figure

    Signatures of the impact of flare ejected plasma on the photosphere of a sunspot light-bridge

    Full text link
    We investigate the properties of a sunspot light-bridge, focusing on the changes produced by the impact of a plasma blob ejected from a C-class flare. We observed a sunspot in active region NOAA 12544 using spectropolarimetric raster maps of the four Fe I lines around 15655 \AA\ with the GREGOR Infrared Spectrograph (GRIS), narrow-band intensity images sampling the Fe I 6173 \AA\ line with the GREGOR Fabry-P\'erot Interferometer (GFPI), and intensity broad band images in G-band and Ca II H band with the High-resolution Fast Imager (HiFI). All these instruments are located at the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The data cover the time before, during, and after the flare event. The analysis is complemented with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data from the Solar Dynamics Observatory (SDO). The physical parameters of the atmosphere at differents heights were inferred using spectral-line inversion techniques. We identify photospheric and chromospheric brightenings, heating events, and changes in the Stokes profiles associated to the flare eruption and the subsequent arrival of the plasma blob to the light bridge, after traveling along an active region loop. The measurements suggest that these phenomena are the result of reconnection events driven by the interaction of the plasma blob with the magnetic field topology of the light bridge.Comment: Accepted for publication in A&

    Magnetothermal instabilities in magnetized anisotropic plasmas

    Full text link
    Using the transport equations for an ideal anisotropic collisionless plasma derived from the Vlasov equation by the 16-moment method, we analyse the influence of pressure anisotropy exhibited by collisionless magnetized plasmas on the magnetothermal (MTI) and heat-flux-driven buoyancy (HBI) instabilities. We calculate the dispersion relation and the growth rates for these instabilities in the presence of a background heat flux and for configurations with static pressure anisotropy, finding that when the frequency at which heat conduction acts is much larger than any other frequency in the system (i.e. weak magnetic field) the pressure anisotropy has no effect on the MTI/HBI, provided the degree of anisotropy is small. In contrast, when this ordering of timescales does not apply the instability criteria depend on pressure anisotropy. Specifically, the growth time of the instabilities in the anisotropic case can be almost one order of magnitude smaller than its isotropic counterpart. We conclude that in plasmas where pressure anisotropy is present the MTI/HBI are modified. However, in environments with low magnetic fields and small anisotropy such as the ICM the results obtained from the 16-moment equations under the approximations considered are similar to those obtained from ideal MHD.Comment: v3: 16 pages, 2 figures, fixed typos, added references and a final note on related wor

    Ion-beam mixing induced by atomic and cluster bombardment in the electronic stopping-power regime

    Get PDF
    Single crystals of magnesium oxide containing nanoprecipitates of sodium were bombarded with swift ions (∼GeV-Pb, U) or cluster beams (∼20 MeV-C60) to study the phase change induced by electronic processes at high stopping power (≳10 keV/nm). The sodium precipitates and the defect creation were characterized by optical absorption and transmission electron microscopy. The ion or cluster bombardment leads to an evolution of the Na precipitate concentration but the size distribution remains unchanged. The decrease in Na metallic concentration is attributed to mixing effects at the interfaces between Na clusters and MgO. In addition, optical-absorption measurements show a broadening of the absorption band associated with electron plasma oscillations in Na clusters. This effect is due to a decrease of the electron mean free path, which could be induced by defect creation in the metal. All these results show an influence of high electronic stopping power in materials known to be very resistant to irradiation with weak ionizing projectiles. The dependence of these effects on electronic stopping power and on various solid-state parameters is discussed

    Latest results for the antikaon-nucleon optical potential

    Get PDF
    The key question of this letter is whether the K-nucleus optical potential is deep, as it is prefered by the phenomenological fits to kaonic atoms data, or shallow, as it comes out from unitary chiral model calculations. The current experimental situation is reviewed.Comment: 3 pages, 1 figure. Presented at the 21st European Conference on the Few-Body problems in Physics (EFB21), Salamanca, Spain, August 29 - September 3, 201
    • …
    corecore