28,025 research outputs found

    Shear-melting of a hexagonal columnar crystal by proliferation of dislocations

    Full text link
    A hexagonal columnar crystal undergoes a shear-melting transition above a critical shear rate or stress. We combine the analysis of the shear-thinning regime below the melting with that of synchrotron X-ray scattering data under shear and propose the melting to be due to a proliferation of dislocations, whose density is determined by both techniques to vary as a power law of the shear rate with a 2/3 exponent, as expected for a creep model of crystalline solids. Moreover, our data suggest the existence under shear of a line hexatic phase, between the columnar crystal and the liquid phase

    Energy weighted sum rules for mesons in hot and dense matter

    Get PDF
    We study energy weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion self-energy. The in-medium spectral densities of the K and anti-K mesons are obtained from a chiral unitary approach in coupled channels which incorporates the S- and P-waves of the kaon-nucleon interaction. The pion self-energy is determined from the P-wave coupling to particle-hole and Delta-hole excitations, modified by short range correlations. The sum rules for the lower energy weights are fulfilled satisfactorily and reflect the contributions from the different quasi-particle and collective modes of the meson spectral function. We discuss the sensitivity of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.Comment: 19 pages, 6 figures; one figure added, enhanced discussion, version to appear in PR

    Mean field study of structural changes in Pt isotopes with the Gogny interaction

    Get PDF
    The evolution of the nuclear shapes along the triaxial landscape is studied in the Pt isotopic chain using the selfconsistent Hartree-Fock-Bogoliubov approximation based on the Gogny interaction. In addition to the parametrization D1S, the new incarnations D1N and D1M of this force are also included in our analysis to asses to which extent the predictions are independent of details of the effective interaction. The considered range of neutron numbers 88<N<26 includes prolate, triaxial, oblate and spherical ground state shapes and serves for a detailed comparison of the predictions obtained with the new sets D1N and D1M against the ones provided by the standard parametrization Gogny-D1S in a region of the nuclear landscape for which experimental and theoretical fingerprints of shape transitions have been found. Structural evolution along the Pt chain is discussed in terms of the deformation dependence of single particle energies.Comment: 18 pages, 10 figures. Accepted for publication in Phys. Rev.
    • …
    corecore