87,296 research outputs found

    The gradient flow in a twisted box

    Full text link
    We study the perturbative behavior of the gradient flow in a twisted box. We apply this information to define a running coupling using the energy density of the flow field. We study the step-scaling function and the size of cutoff effects in SU(2) pure gauge theory. We conclude that the twisted gradient flow running coupling scheme is a valid strategy for step-scaling purposes due to the relatively mild cutoff effects and high precision.Comment: LaTeX. 7 pages. Proceedings of the 31st International Symposium on Lattice Field Theory - LATTICE 2013. July 29 - August 3, 2013. Mainz, German

    FK/Fpi in full QCD

    Full text link
    We determine the ratio FK/Fpi in QCD with Nf=2+1 flavors of sea quarks, based on a series of lattice calculations with three different couplings, large volumes and a simulated pion mass reaching down to about 190 MeV. We obtain FK/Fpi = 1.192 +- 0.007(stat) +- 0.006(sys) with all the sources of systematic uncertainty under control.Comment: 8 pages, 9 figures, 1 table. Presented at the XXVII International Symposium on Lattice Field Theory (2009

    A meta-analysis of the magnetic line broadening in the solar atmosphere

    Full text link
    A multi-line Bayesian analysis of the Zeeman broadening in the solar atmosphere is presented. A hierarchical probabilistic model, based on the simple but realistic Milne-Eddington approximation to the solution of the radiative transfer equation, is used to explain the data in the optical and near infrared. Our method makes use of the full line profiles of a more than 500 spectral lines from 4000 A˚\AA to 1.8 μ\mum. Although the problem suffers from a strong degeneracy between the magnetic broadening and any other remaining broadening mechanism, the hierarchical model allows to isolate the magnetic contribution with reliability. We obtain the cumulative distribution function for the field strength and use it to put reliable upper limits to the unresolved magnetic field strength in the solar atmosphere. The field is below 160-180 G with 90% probability.Comment: 9 pages, 6 figures, accepted for publication in A&A. Fixed reference

    Recent results on the nonmesonic weak decay of hypernuclei within a one-meson-exchange model

    Get PDF
    We update our previous results for the nonmesonic decay of Λ12^{12}_\LambdaC and Λ5^5_\LambdaHe. We pay special attention to the role played by Final State Intreractions on the decay observables. We follow a One-Meson-Exchange model which includes the exchange of the π,ρ,K,K,η\pi, \rho, K, K^*, \eta and ω\omega mesons. We also present recent predictions for different observables concerning the decay of the doubly strange ΛΛ6^6_{\Lambda \Lambda}He hypernucleus.Comment: 4 pages. Contribution to the Mesons and Light Nuclei'01 Conference, Prague, 2-6 July 200

    The Weak Decay of Hypernuclei

    Get PDF
    The nonmesonic weak decay of Λ\Lambda hypernuclei is studied in a shell model framework. A complete strangeness-changing weak ΛNNN\Lambda N \to NN transition potential, based on one boson exchange, is constructed by including the exchange of the pseudoscalar mesons π\pi, K, η\eta as well as the vector mesons ρ,ω\rho, \omega, and K^*, whose weak coupling constants are obtained from soft meson theorems and SU(6)w_w. General expressions for nucleons in arbitrary shells are obtained. The transition matrix elements include realistic Λ\LambdaN short-range correlations and NN final state interactions based on the Nijmegen baryon-baryon potential. The decay rates are found to be especially sensitive to the inclusion of the strange mesons, K and K^*, even though the role of kaon exchange is found to be reduced with recent couplings obtained from next-to-leading order Chiral Perturbation Theory. With the weak couplings used in this study the rates remain dominated by the pion-exchange mechanism since the contributions of heavier mesons either cancel each other or are suppressed by form factors and short-range correlations. The total decay rate therefore remains in agreement with present measurements. However, the partial rates which are even more sensitive to the inclusion of heavier mesons cannot be reconciled with the data. The proton asymmetry changes by 50% once heavier mesons are included and agrees with the available data.Comment: 70 pages, 8 figures, epsf.tex, revtex, submitted to Phys. Rev.

    Image Reconstruction with Analytical Point Spread Functions

    Full text link
    The image degradation produced by atmospheric turbulence and optical aberrations is usually alleviated using post-facto image reconstruction techniques, even when observing with adaptive optics systems. These techniques rely on the development of the wavefront using Zernike functions and the non-linear optimization of a certain metric. The resulting optimization procedure is computationally heavy. Our aim is to alleviate this computationally burden. To this aim, we generalize the recently developed extended Zernike-Nijboer theory to carry out the analytical integration of the Fresnel integral and present a natural basis set for the development of the point spread function in case the wavefront is described using Zernike functions. We present a linear expansion of the point spread function in terms of analytic functions which, additionally, takes defocusing into account in a natural way. This expansion is used to develop a very fast phase-diversity reconstruction technique which is demonstrated through some applications. This suggest that the linear expansion of the point spread function can be applied to accelerate other reconstruction techniques in use presently and based on blind deconvolution.Comment: 10 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Compressive Sensing for Spectroscopy and Polarimetry

    Full text link
    We demonstrate through numerical simulations with real data the feasibility of using compressive sensing techniques for the acquisition of spectro-polarimetric data. This allows us to combine the measurement and the compression process into one consistent framework. Signals are recovered thanks to a sparse reconstruction scheme from projections of the signal of interest onto appropriately chosen vectors, typically noise-like vectors. The compressibility properties of spectral lines are analyzed in detail. The results shown in this paper demonstrate that, thanks to the compressibility properties of spectral lines, it is feasible to reconstruct the signals using only a small fraction of the information that is measured nowadays. We investigate in depth the quality of the reconstruction as a function of the amount of data measured and the influence of noise. This change of paradigm also allows us to define new instrumental strategies and to propose modifications to existing instruments in order to take advantage of compressive sensing techniques.Comment: 11 pages, 9 figures, accepted for publication in A&

    Spin polarized neutron matte and magnetic susceptibility within the Brueckner-Hartree-Fock approximation

    Get PDF
    The Brueckner--Hartree--Fock formalism is applied to study spin polarized neutron matter properties. Results of the total energy per particle as a function of the spin polarization and density are presented for two modern realistic nucleon-nucleon interactions, Nijmegen II and Reid93. We find that the dependence of the energy on the spin polarization is practically parabolic in the full range of polarizations. The magnetic susceptibility of the system is computed. Our results show no indication of a ferromagnetic transition which becomes even more difficult as the density increases.Comment: 15 pages, 4 figures (Submitted to PRC
    corecore