11 research outputs found

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    CracidMex1: a comprehensive database of global occurrences of cracids (Aves, Galliformes) with distribution in Mexico

    No full text
    Cracids are among the most vulnerable groups of Neotropical birds. Almost half of the species of this family are included in a conservation risk category. Twelve taxa occur in Mexico, six of which are considered at risk at national level and two are globally endangered. Therefore, it is imperative that high quality, comprehensive, and high-resolution spatial data on the occurrence of these taxa are made available as a valuable tool in the process of defining appropriate management strategies for conservation at a local and global level. We constructed the CracidMex1 database by collating global records of all cracid taxa that occur in Mexico from available electronic databases, museum specimens, publications, “grey literature”, and unpublished records. We generated a database with 23,896 clean, validated, and standardized geographic records. Database quality control was an iterative process that commenced with the consolidation and elimination of duplicate records, followed by the geo-referencing of records when necessary, and their taxonomic and geographic validation using GIS tools and expert knowledge. We followed the geo-referencing protocol proposed by the Mexican National Commission for the Use and Conservation of Biodiversity. We could not estimate the geographic coordinates of 981 records due to inconsistencies or lack of sufficient information in the description of the locality.Given that current records for most of the taxa have some degree of distributional bias, with redundancies at different spatial scales, the CracidMex1 database has allowed us to detect areas where more sampling effort is required to have a better representation of the global spatial occurrence of these cracids. We also found that particular attention needs to be given to taxa identification in those areas where congeners or conspecifics co-occur in order to avoid taxonomic uncertainty. The construction of the CracidMex1 database represents the first comprehensive research effort to compile current, available global geographic records for a group of cracids. The database can now be improved by continuous revision and addition of new records. The CracidMex1 database will provide high quality input data that could be used to generate species distribution models, to assess temporal changes in species distributions, to identify priority areas for research and conservation, and in the definition of management strategies for this bird group. This compilation exercise could be replicated for other cracid groups or regions to attain a better knowledge of the global occurrences of the species in this vulnerable bird family

    Figure 6 from: Martínez-Morales M, Pinilla-Buitrago G, González-García F, Enríquez P, Rangel-Salazar J, Guichard Romero C, Navarro-Sigüenza A, Monterrubio-Rico T, Escalona-Segura G (2014) CracidMex1: a comprehensive database of global occurrences of cracids (Aves, Galliformes) with distribution in Mexico. ZooKeys 420: 87-115. https://doi.org/10.3897/zookeys.420.7050

    No full text

    Potential metabolic and behavioural roles of the putative endocannabinoid receptors GPR18, GPR55 and GPR119 in feeding

    No full text
    corecore