3,062 research outputs found

    Listening to students

    Full text link
    Written assessment feedback has not been widely researched despite higher education students continually expressing the need for meaningful and constructive feedback. This qualitative study employing focus groups captures and interprets the student perspective of written assessment feedback. Participants were Registered Nurses and non-traditional entrants to higher education. The findings generated a framework of themes and categories representing the feedback process experienced by the students. The themes were `learning from', `the process of receiving' and `making sense of' feedback. When this framework incorporates strategies such as `feed-forward', self-managed learning and personalized guidance it then represents a heuristic model of effective written assessment feedback. The model, created as a result of the research, should enhance the student experience and aid understanding of the complex processes associated with providing written assessment feedback

    Laser cooling of a nanomechanical resonator mode to its quantum ground state

    Full text link
    We show that it is possible to cool a nanomechanical resonator mode to its ground state. The proposed technique is based on resonant laser excitation of a phonon sideband of an embedded quantum dot. The strength of the sideband coupling is determined directly by the difference between the electron-phonon couplings of the initial and final states of the quantum dot optical transition. Possible applications of the technique we describe include generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex

    Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease.

    Get PDF
    Metabolomic profiling can be used to study disease-induced changes in inflammatory bowel diseases (IBD). The aim of this study was to investigate the difference in the metabolomic profile of males and females as they developed IBD. Using the IL-10 gene-deficient mouse model of IBD and wild-type mice, urine at age 4, 6, 8, 12, 16, and 20 weeks was collected and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Multivariate data analysis was employed to assess differences in metabolomic profiles that occurred as a consequence of IBD development and severity (at week 20). These changes were contrasted to those that occurred as a consequence of gender. Our results demonstrate that both IL-10 gene-deficient and wild-type mice exhibit gender-related changes in urinary metabolomic profile over time. Some male-female separating metabolites are common to both IL-10 gene-deficient and control wild-type mice and, therefore, appear to be related predominantly to gender maturation. In addition, we were able to identify gender-separating metabolites that are unique for IL-10 gene-deficient and wild-type mice and, therefore, may be indicative of a gender-specific involvement in the development and severity of the intestinal inflammation. The comparison of the gender-separating metabolomic profile from IL-10 gene-deficient mice and wild-type mice during the development of IBD allowed us to identify changes in profile patterns that appear to be imperative in the development of intestinal inflammation, but yet central to gender-related differences in IBD development. The knowledge of metabolomic profile differences by gender and by disease severity has potential clinical implications in the design of both biomarkers of disease as well as the development of optimal therapies

    Pharmacogenomic studies using paraffin embedded tumor samples

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109786/1/cptclpt2003296.pd

    Liquid-filled hard gelatin capsules : excipient/capsule compatibility studies

    Get PDF
    Encapsulation of pharmaceutical formulations as liquids or semisolids, within hard gelatin capsules, presents an important oral dosage strategy for poorly water-soluble drugs, resulting in good bioavailability and reproducible drug absorption. In addition, this technology offers an inherently safer process than powder filled capsules and tablets for highly potent or cytotoxic drugs by avoiding dust generation. Here we present a compatibility study of hard gelatin capsules with common excipients in absence of active pharmaceutical

    Utilitarian Collective Choice and Voting

    Get PDF
    In his seminal Social Choice and Individual Values, Kenneth Arrow stated that his theory applies to voting. Many voting theorists have been convinced that, on account of Arrow’s theorem, all voting methods must be seriously flawed. Arrow’s theory is strictly ordinal, the cardinal aggregation of preferences being explicitly rejected. In this paper I point out that all voting methods are cardinal and therefore outside the reach of Arrow’s result. Parallel to Arrow’s ordinal approach, there evolved a consistent cardinal theory of collective choice. This theory, most prominently associated with the work of Harsanyi, continued the older utilitarian tradition in a more formal style. The purpose of this paper is to show that various derivations of utilitarian SWFs can also be used to derive utilitarian voting (UV). By this I mean a voting rule that allows the voter to score each alternative in accordance with a given scale. UV-k indicates a scale with k distinct values. The general theory leaves k to be determined on pragmatic grounds. A (1,0) scale gives approval voting. I prefer the scale (1,0,-1) and refer to the resulting voting rule as evaluative voting. A conclusion of the paper is that the defects of conventional voting methods result not from Arrow’s theorem, but rather from restrictions imposed on voters’ expression of their preferences. The analysis is extended to strategic voting, utilizing a novel set of assumptions regarding voter behavior

    The Changing Eigenfrequency Continuum during Geomagnetic Storms:Implications for Plasma Mass Dynamics and ULF Wave Coupling

    Get PDF
    Geomagnetic storms are one of the most energetic space weather phenomena. Previous studies have shown that the eigenfrequencies of ultralow frequency (ULF) waves on closed magnetic field lines in the inner magnetosphere decrease during storm times. This change suggests either a reduction in the magnetic field strength and/or an increase in its plasma mass density distribution. We investigate the changes in local eigenfrequencies by applying a superposed multiple‐epoch analysis to cross‐phase spectra from 132 geomagnetic storms. Six ground magnetometer pairs are used to investigate variations from approximately 3 4, the eigenfrequencies decrease by as much as 50% relative to their quiet time values. Both a decrease in magnetic field strength and an increase in plasma mass density, in some locations by more than a factor of 2, are responsible for this reduction. The enhancement of the ring current and an increase in oxygen ion density could explain these observations. At L < 4, the eigenfrequencies increase due to the decrease in plasma mass density caused by plasmaspheric erosion

    Graduate Quantum Mechanics Reform

    Full text link
    We address four main areas in which graduate quantum mechanics education can be improved: course content, textbook, teaching methods, and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, used textbooks that include such content, incorporated a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey. We find that graduate students respond well to research-based techniques that have been tested mainly in introductory courses, and that they learn much of the new content introduced in each version of the course. We also find that students' ability to answer conceptual questions about graduate quantum mechanics is highly correlated with their ability to solve calculational problems on the same topics. In contrast, we find that students' understanding of basic undergraduate quantum mechanics concepts at the modern physics level is not improved by instruction at the graduate level.Comment: accepted to American Journal of Physic
    corecore