3,275 research outputs found

    Organic slug control using Phasmarhabditis hermaphrodita

    Get PDF
    Phasmarhabditis hermaphrodita is a lethal slug parasitic nematode that has been formulated into an effective biological control agent called Nemaslug®. We investigated the possibility of using different application methods of P. hermaphrodita to reduce cost and the number of nematodes applied. We also compared P. hermaphrodita with a new slug pellet called Ferramol®, which is available for use on organic farms

    First Order Premelting Transition of Vortex Lattices

    Full text link
    Vortex lattices in the high temperature superconductors undergo a first order phase transition which has thus far been regarded as melting from a solid to a liquid. We point out an alternative possibility of a two step process in which there is a first order transition from an ordinary vortex lattice to a soft vortex solid followed by another first order melting transition from the soft vortex solid to a vortex liquid. We focus on the first step. This premelting transition is induced by vacancy and interstitial vortex lines. We obtain good agreement with the experimental transition temperature versus field, latent heat, and magnetization jumps for YBCO and BSCCO.Comment: revised version replaces 9705092, 5 pages, Latex, 2 postscript figures, defect line wandering is included, 2 step melting is propose

    The EMT-activator ZEB1 is unrelated to platinum drug resistance in ovarian cancer but is predictive of survival

    Get PDF
    The IGROVCDDP cisplatin-resistant ovarian cancer cell line is an unusual model, as it is also cross-resistant to paclitaxel. IGROVCDDP, therefore, models the resistance phenotype of serous ovarian cancer patients who have failed frontline platinum/taxane chemotherapy. IGROVCDDP has also undergone epithelial-mesenchymal transition (EMT). We aim to determine if alterations in EMT-related genes are related to or independent from the drug-resistance phenotypes. EMT gene and protein markers, invasion, motility and morphology were investigated in IGROVCDDP and its parent drug-sensitive cell line IGROV-1. ZEB1 was investigated by qPCR, Western blotting and siRNA knockdown. ZEB1 was also investigated in publicly available ovarian cancer gene-expression datasets. IGROVCDDP cells have decreased protein levels of epithelial marker E-cadherin (6.18-fold, p = 1.58e−04) and higher levels of mesenchymal markers vimentin (2.47-fold, p = 4.43e−03), N-cadherin (4.35-fold, p = 4.76e−03) and ZEB1 (3.43-fold, p = 0.04). IGROVCDDP have a spindle-like morphology consistent with EMT. Knockdown of ZEB1 in IGROVCDDP does not lead to cisplatin sensitivity but shows a reversal of EMT-gene signalling and an increase in cell circularity. High ZEB1 gene expression (HR = 1.31, n = 2051, p = 1.31e−05) is a marker of poor overall survival in high-grade serous ovarian-cancer patients. In contrast, ZEB1 is not predictive of overall survival in high-grade serous ovarian-cancer patients known to be treated with platinum chemotherapy. The increased expression of ZEB1 in IGROVCDDP appears to be independent of the drug-resistance phenotypes. ZEB1 has the potential to be used as biomarker of overall prognosis in ovarian-cancer patients but not of platinum/taxane chemoresistance

    Nucleon axial form factors from two-flavour Lattice QCD

    Full text link
    We present preliminary results on the axial form factor GA(Q2)G_A(Q^2) and the induced pseudoscalar form factor GP(Q2)G_P(Q^2) of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with mπ=340 MeVm_\pi = 340 \ \text{MeV} and lattice spacing a∼0.05 fma \sim 0.05 \ \text{fm}. The relevant three-point functions were computed with source-sink separations ranging from ts∼0.6 fmt_s \sim 0.6 \ \text{fm} to $t_s \sim \ 1.4 \ \text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.Comment: 7 pages, 12 figures; talk presented at Lattice 2014 -- 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, N

    Nucleon electromagnetic form factors in two-flavour QCD

    Get PDF
    We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties.Comment: 22 pages, 10 figures, citations modifie

    Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines

    Get PDF
    We investigate the self-phase modulation of intense femtosecond laser pulses propagating in an ionizing gas and its effects on collective properties of high-order harmonics generated in the medium. Plasmas produced in the medium are shown to induce a positive frequency chirp on the leading edge of the propagating laser pulse, which subsequently drives high harmonics to become positively chirped. In certain parameter regimes, the plasma-induced positive chirp can help to generate sharply peaked high harmonics, by compensating for the dynamically-induced negative chirp that is caused by the steep intensity profile of intense short laser pulses.Comment: 5 pages, 5 figure

    Energy deposition in the ionosphere through a global field line resonance

    No full text
    International audienceWe present an interval whereby we can estimate the energy dissipation in the ionosphere through an externally-driven field line resonance. In this paper, we utilise an interval described in general by Rae et al. (2005), where the global magnetospheric cavity was shown to be energised via a high solar wind speed stream. Using the ground-based instrumentation available, we estimate the spatial extent of the generated pulsations to be at least 10° in latitude and 65° in longitude, a sizeable fraction of the dusk-sector ionosphere. Using a fortuitous conjunction with the Polar spacecraft, we compare point measurements of the net downward Poynting vector to the estimated Joule heating rate in the ionosphere, and find that model values of the Pedersen conductance are reasonable. In the interval of interest, we estimate the total dissipation rate during a global field line resonance to be comparable to that reported in substorm studies. Previous studies have estimated the total energy deposition via field line resonance to be up to 4% of that deposited during a small substorm. However, in this paper we find that the total energy deposited via Joule heating may actually be 30% or more of the energy deposited in the ionosphere during a substorm cycle using a conservative estimate of the pulsation duration
    • …
    corecore